🔥 Welcome to Inam Jazbi’s Ultimate Guide
Welcome to Inam Jazbi’s ultimate guide to XI Chemistry – Thermochemistry (Chapter # 11)! 🔥 Whether you're preparing for board exams or competitive tests like MDCAT / ECAT, this blog is packed with everything you need to ace Thermochemistry.
- 🔥 Chapter 11 Test Questions to practice core concepts of thermochemistry
- 🔥 Detailed solutions for numericals and problems
- 🔥 MCQs to test your understanding and boost exam confidence
With Inam Jazbi’s expert tips and solutions, you’re all set to master
Thermochemistry and score big in your XI Chemistry exams! 🚀
Let’s dive into the heat of learning and make Thermochemistry your strength! 💥
🧪 Class 11 Chemistry – Chapter 11: Thermochemistry ✨
Preparing for Class 11 Chemistry exams and worried about Chapter 11: Thermochemistry ? 😟 You’re in the right place! ✅
In this blog, Inam Jazbi’s smart, board-oriented model test questions are carefully designed to sharpen your concepts, boost your confidence 💪, and help you score maximum marks 📈.
These questions strictly follow the latest exam pattern, covering important numericals, MCQs, short and long questions, with special focus on the areas examiners love to repeat 🔁.
If you want easy understanding + high scores 🏆, this guide is a must-read before your chemistry paper! 📘🔥
✏️ Model Test Questions XI Chemistry Chapter # 11………… Thermochemistry ✏️
✏️ Short Questions of Thermochemistry ✏️
internal energy, Enthalpy, system, surrounding, state, state of system, macroscopic properties, internal energy, enthalpy, thermochemical reaction, heat of neutralization, Heat of combustion, Thermodynamics, Thermochemistry, thermodynamical standard state
(i) Intensive and Extensive properties
(ii) Exothermic and Endothermic reactions
Photosynthesis, Evaporation, Combustion, Freezing, Sublimation, Cracking, Bond cleavage, Electrolysis, condensation, fermentation, bond formation, melting, hydration.
Area, Enthalpy, Refractive index, Density, Internal energy, Volume, Temperature, Entropy
✏️ Descriptive Questions ✏️
✏️ Numericals on Thermochemistry✏️
(i) 20 calories energy into joule
C₃H₈ (g) + 5O₂(g) → 3CO₂(g) + 4H₂O(g) ∆H° = ?
∆Hf° of C₃H₈ (g) = −103.9 kJ/mol
∆Hf° of CO₂(g) = −393.5 kJ/mol
∆Hf° of H₂O(g) = −285.8 kJ/mol
2H₂S₍g₎ + 3O₂(g) → 2H₂O₍ₗ₎ + 2SO₂₍g₎
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
∆Hf° of H₂S₍g₎ = −20.17 kJ/mol, ∆Hf° of Fe₂O₃₍ₛ₎ = −824.2 kJ/mol
∆Hf° of O₂₍g₎ = 0 kJ/mol, ∆Hf° of CO₍g₎ = −110.5 kJ/mol
∆Hf° of H₂O₍g₎ = −285.8 kJ/mol, ∆Hf° of 2Fe(s) = 0 kJ/mol
∆Hf° of SO₂₍g₎ = −296.8 kJ/mol, ∆Hf° of CO₂(g) = −393.5 kJ/mol
[Exercise Q2, Page # 237]
4NH₃ (g) + 5O₂(g) → 4NO(g) + 6H₂O(g)
Determine standard heat of reaction (ΔH°) from the following given data:
ΔHf° of NH₃ = −46.91 kJ/mol
ΔHf° of NO = 90.25 kJ/mol
ΔHf° of H₂O = −285.8 kJ/mol
C(s) + O₂(g) → CO₂(g) ∆H = −393.5 kJ
H₂(g) + ½O₂(g) → H₂O₍ₗ₎ ∆H = −285.8 kJ
C₂H₂(g) + 5/2O₂(g) → 2CO₂(g) + H₂O₍ₗ₎ ∆H = −1299.5 kJ
2C(s) + H₂(g) → C₂H₂(g) ∆Hf = ?
C₈H₁₈₍ₗ₎ + 12 ½ O₂ → 8CO₂(g) + 9H₂O₍ₗ₎
Given that
ΔHf° of CO₂ = −393.5 kJ/mol,
ΔHf° of H₂O = −285.8 kJ/mol,
ΔHf° of C₈H₁₈ = −223.8 kJ/mol
3C(s) + 4H₂(g) + 3/2 O₂ → C₃H₈O₃(l) (ΔHf° = ?)
C(s) + O₂(g) → CO₂(g) ΔH° = −393.5 kJ/mol
H₂(g) + ½O₂(g) → H₂O₍ₗ₎ ΔH° = −285.8 kJ/mol
C₃H₈O₃(l) + 31/2 O₂(g) → 3CO₂(g) + 4H₂O₍ₗ₎ ΔH° = −1654.1 kJ/mol
Sublimation energy of Rb₍ₛ₎ = 82 kJ/mol
Ionization energy of Rb(g) = 403 kJ/mol
Dissociation energy of Cl₂(g) = 242 kJ/mol
Electron affinity of Cl₂(g) = −348.5 kJ/mol
Lattice energy of RbCl₍ₛ₎ = −689 kJ/mol
I.P 1st of Rb = 403 kJ/mol
Electron affinity of Cl = −349 kJ/mol
Bond energy of Cl₂ = 242 kJ/mol
Sublimation energy of Rb = 86.5 kJ/mol
Heat of formation of RbCl = −430.5 kJ/mol
(a) If the volume is kept constant.
(b) If the volume is not constant, work of +1800 kJ was performed.
(c) If the gas is allowed to expand, the value of work is 8800 kJ.
Enthalpy of combustion of graphite = –393.6 kJ/mol
Enthalpy of combustion of hydrogen = –285.9 kJ/mol
Enthalpy of combustion of butane = –2877.1 kJ/mol
(i) C + O₂ → CO₂(g) ΔH = –394 kJ
(ii) H₂ + ½ O₂ → H₂O(g) ΔH = –285.8 kJ
(iii) C₂H₅OH₍ₗ₎ + 3O₂ → 2CO₂ + 3H₂O ΔH = –1402.14 kJ
(iv) 2C + 3H₂ + ½ O₂ → C₂H₅OH₍ₗ₎ ΔHf = ?
(i) C + O₂ → CO₂(g) ΔH = –394 kJ
(ii) H₂ + ½ O₂ → H₂O(g) ΔH = –286 kJ
(iii) C₆H₆ + 7.5O₂ → 6CO₂ + 3H₂O ΔH = –3267 kJ
(iv) 6C + 3H₂ → C₆H₆ ΔHf = ?
(i) C + O₂ → CO₂(g) ΔH = –394 kJ
(ii) H₂ + ½ O₂ → H₂O(g) ΔH = –284 kJ
(iii) C₂H₂ + 5/2 O₂ → 2CO₂ + H₂O ΔH = –1296 kJ
(iv) 2C(s) + H₂(g) → C₂H₂(g) ΔHf = ?
(i) C(s) + ½ O₂(g) → CO(g) ΔH = –111 kJ/mol
(ii) H₂(g) + ½ O₂ → H₂O(g) ΔH = –286 kJ/mol
(iii) CH₃OH₍ₗ₎ + O₂(g) → CO(g) + 2H₂O(l) ΔH = –561 kJ/mol
(iv) C(s) + 2H₂(g) + ½ O₂(g) → CH₃OH₍ₗ₎ ΔHf = ?
✏️ Text Book MCQs on Thermochemistry with Explanatory Answers ✏️
✏️ Extra MCQs from Past Papers on Thermochemistry with Explanatory Answers ✏️
✏️ Smart Answers of Model Test Questions XI Chemistry on Thermochemistry Chapter # 11 Test # 15✏️
✏️ Smart Answers of Short-Answer Questions on Thermochemistry ✏️
Q1. State precisely the meaning of each of the following terms:
Define internal energy, Enthalpy, system, surrounding, state, state of system, macroscopic properties, internal energy, enthalpy, thermochemical reaction, heat of neutralization, Heat of combustion, Thermodynamics, Thermochemistry, thermodynamical standard state
🔥 Thermodynamics (Greek; means ‘Heat flow’)
Thermodynamics is the branch of science that deals with the study of interconversion of heat, work, and other forms of energy during physical and chemical processes, based on the law of conservation of energy. It is the study of ‘energy transformations or energy changes’ or flow of heat ⚖️.
🧪 Thermochemistry
Thermochemistry is the branch of chemistry that studies the heat energy changes associated with chemical and physical reactions 🌡️. Thermochemistry is the study of relationship between heat energy and chemical energy.
♨️ Thermochemical Reaction
A thermochemical reaction is a chemical reaction that is accompanied by absorption or evolution of heat energy with the material changes 🔥❄️.
📏 Macroscopic Properties (Measurable Properties)
Macroscopic properties are the bulk properties of a system that can be easily measured, such as temperature, pressure, volume, mass, chemical composition and entropy 📊.
🔬 System
A system is the specified part of the universe under study, separated from its surroundings by a real or imaginary boundary, in which physical or chemical changes occur ⚗️.
🌍 Surroundings
Surroundings are the rest of the universe except the system, which can exchange energy or matter with the system 🌐.
🚧 Boundary
A boundary is a real or imaginary closed surface that separates a system from its surroundings. It may allow (adiabatic boundary) or prevent heat (diathermal boundary) and matter exchange 🚪.
🧭 State of a System
The state of a system is defined completely by its macroscopic properties like temperature, pressure, volume, and composition at a given time ⏱️.
📌 Thermodynamic Standard State
The thermodynamic standard state is the most stable form of a pure substance at 1 atm pressure, 25°C (298 K), and 1 M concentration for solutions (standard conditions) ✅.
🔁 State Function
A state function is a property or thermodynamic parameter whose value depends only on the initial and final states of the system, not on the path followed 🔄. e.g. internal energy, enthalpy, temperature, volume etc.
⚡ Internal Energy (U or E)
Internal energy is the total energy of a system, equal to the sum of kinetic and potential energies of all particles present ⚛️.
🔥 Enthalpy (H)
Enthalpy ((meaning to warm) is the total heat content of a system at constant pressure and it is the algebraic product of pressure and volume (PV energy or mechanical work), given by H = E + PV ♨️.
🧾 Standard Enthalpy of Reaction (ΔH°rxn) or Heat of Reaction (ΔH°r)
It is the enthalpy change that occurs when a reaction takes place in the standard state under standard conditions 📉📈. It may be + or –. It is equal to the heat exchanged, qp (heat flow into or out of the system) at constant pressure.
🧱 Standard Enthalpy of Formation (ΔHf°)/ Heat of Formation
It is the enthalpy change when one mole of a compound is formed from its elements in their standard states under standard conditions 🧩. It may be + or –.
💧 Heat of Neutralization (ΔH°neutralization)
The heat of neutralization is the enthalpy change when one mole of water is formed by the reaction of an acid and a base; it is always negative ❄️.
🔥 Heat of Combustion/ Enthalpy of Combustion
The heat of combustion (ΔHc°) is the enthalpy change when one mole of a substance in its standard state under standard conditions undergoes complete combustion in oxygen; it is always negative 🔥⬇️.
📈 Entropy (S)
Entropy is a measure of the degree of disorder or randomness of a system and increases with temperature 🔀.
2. What is meant by internal energy change (∆E) and enthalpy change (∆H)? Under what conditions are ∆E and ∆H equal?
✨Internal Energy Change (ΔE) 🔋
➡️Internal energy change (ΔE) is the difference between the final and initial internal energies of a system.
➡️ΔE = E₂−E₁
➡️It is a state function, as it depends only on the initial and final states of the system and not on the path followed 🔄.
✨Enthalpy Change (ΔH) ♨️
➡️Enthalpy change (ΔH) is the change in heat content of a system at constant pressure. Enthalpy change (ΔH) is the difference between the final and initial enthalpies of a system.
➡️It is also a state function and depends only on the initial and final states of the system.
➡️Exothermic reactions: ΔH is negative (heat released) 🔻
➡️Endothermic reactions: ΔH is positive (heat absorbed) 🔺
✨Condition when ΔE = ΔH ⚖️
For reactions involving solids and liquids, the volume change (ΔV) is negligible, so the term PΔV ≈ 0.
According to the first law of thermodynamics:
ΔH = ΔE + PΔV
Since PΔV≈0
📌 ΔH = ΔE (enthalpy change will be equal to internal energy change)
Q3. How can you define standard enthalpy of formation and standard enthalpy of reaction?
🔥 Standard Enthalpy of Reaction (ΔH°rxn) or Heat of Reaction
The standard enthalpy of reaction is the enthalpy change that occurs when a chemical reaction takes place with reactants and products in their standard states under standard conditions (1 atm pressure and 25°C / 298 K).
It is equal to the heat exchanged at constant pressure (qₚ) and may be positive or negative 📉📈.
🧱 Standard Enthalpy of Formation (ΔH°f)/ Heat of Formation
The standard enthalpy of formation is the enthalpy change when one mole of a compound is formed from its constituent elements in their standard states under standard conditions (1 atm pressure and 25°C / 298 K).
Its value may be positive or negative and is usually expressed in kJ mol⁻¹ ⚛️.
Q4. Differentiate between
(i) Intensive and Extensive properties
(ii) Exothermic and Endothermic reactions
Exothermic Reactions Vs Endothermic Reactions
| S. # | Exothermic Reactions 🔥 | Endothermic Reactions ❄️ |
| 1. | Heat is released to surroundings ♨️ | Heat is absorbed from surroundings ❄️ |
| 2. | Surroundings (container) become hot 🌍🔥 | Surroundings become cold 🌍❄️ |
| 3. | Causes an increase in temperature 🌡️⬆️ | Causes decrease in temperature 🌡️⬇️ |
| 4. | Products have lower enthalpy than reactants 📉 | Products have higher enthalpy than reactants 📈 |
| 5. | ΔH (enthalpy change) is negative (–) i.e. ΔH<0 ⬇️ | ΔH (enthalpy change) is positive (+) i.e. ΔH>0 ⬆️ |
| 6. | Bond formation energy > bond breaking energy 🔗 | Bond breaking energy > bond formation energy ✂️ |
| 7. | Usually spontaneous 🔁 | Usually non-spontaneous ❌ |
| 8. | Examples: combustion, neutralization | Examples: photosynthesis, melting of ice |
Difference between Intensive and Extensive Properties
| S. # | Intensive Properties ⚖️ | Extensive Properties 📦 |
| 1. | Independent of amount of substance ⚖️ | Dependent on amount of substance 📦 |
| 2. | Do not depend on size of system 📏 | Depend on size of system 🏗️ |
| 3. | Help in identification of substances 🔍 | Cannot identify substances ❓ |
| 4. | Non-additive in nature 🚫➕ | Additive in nature ➕ |
| 5. | Examples: Density, specific gravity, pressure, temperature, etc. | Examples: Length, Distance, mass, Time, volume, internal energy, enthalpy, entropy etc. |
Q5. Give 5 general examples of each of exothermic and endothermic changes in text format
✨Exothermic Changes 🔥 (Heat Released)
➡️ Combustion reactions (release heat to the surroundings 🔥)
➡️ Respiration (exothermic process that produces energy 🫁)
➡️ Neutralization reactions (evolve heat ⚗️)
➡️ Fermentation (releases heat during chemical change 🍞)
➡️ Bond formation (always an exothermic process 🔗)
➡️ Metal–water reactions (liberate heat 💧)
➡️ Most oxidation reactions (are exothermic ⚙️)
✨Endothermic Changes ❄️ (Heat Absorbed)
➡️ Decomposition reactions (absorb heat ❄️)
➡️ Electrolysis (requires energy input 🔌)
➡️ Photosynthesis (absorbs solar energy 🌿)
➡️ Bond breaking (always an endothermic process 🔓)
➡️ Molecular addition reactions (absorb heat ➕)
➡️ Water gas formation (absorbs heat 💨)
➡️ Melting of ice (absorbs heat 🧊)
Q6. Give 5 examples of each of extensive and intensive properties in text format
✨Extensive Properties 📦
➡️ Density, specific gravity, pressure, temperature, viscosity, vapour pressure, surface tension, melting point, boiling point, freezing point, refractive index, concentration, velocity, chemical properties, chemical potential, specific heat capacity, specific volume, specific energy, electrical resistivity, hardness, ductility, elasticity, malleability, etc.
✨Intensive Properties ⚖️
➡️ Length, distance, mass, time, volume, area, weight, momentum, mole numbers, particle number, electric charge, work, enthalpy, entropy, internal energy, Gibb’s free energy, energy, heat capacity, magnetic moment.
Q7. Categorize the following into exothermic and endothermic changes in tabular form:
Photosynthesis, Evaporation, Combustion, Freezing, Sublimation, Cracking, Bond cleavage, Electrolysis, condensation, fermentation, bond formation, melting, hydration.
🔥 Exothermic
| Combustion |
| Condensation |
| Freezing |
| Fermentation |
| Bond Formation |
| Hydration |
❄️ Endothermic
| Photosynthesis |
| Evaporation |
| Sublimation |
| Cracking |
| Bond Cleavage |
| Electrolysis |
| Melting |
Q8. Categorize the following into intensive and extensive properties in tabular form:
Area, Enthalpy, Refractive index, Density, Internal energy, Volume, Temperature, Entropy
⚖️ Intensive
| Refractive index |
| Density |
| Temperature |
📦 Extensive
| Area |
| Enthalpy |
| Internal energy |
| Volume |
| Entropy |
Q9. State and explain the first law of thermodynamics. Derive pressure-volume work of a system.
📚 Introduction
➡️The concept was enunciated by J.R. Mayer (1841), formulated by Helmholtz (1847).
➡️The first law of thermodynamics relates energy, heat, and work.
➡️It is an adaptation of the law of conservation of energy: energy cannot be created or destroyed, only transferred between a system and its surroundings as heat (q) or work (W).
📌 Statement of the First Law
In any physical or chemical process:
A system cannot create or destroy energy, but may exchange it with surroundings as heat or work, keeping the total energy of system + surroundings (or the universe) constant.
OR
The change in internal energy of the system is the sum of heat exchanged (heat lost or gained) and work done on or by the system. i.e.
Change in internal energy = Heat exchanged + Work done on or by system
🧮 Mathematical Formulation of the Law
ΔE = q + W
Where:
ΔE = change in internal energy of the system 🔋
q = Heat transfer or heat absorbed (+) or released (–) 🌡️
W = work done on (+) or by (–) the system ⚙️
✨ Other Forms:
➡️ ΔE = q, if no work is done
➡️ ΔE = W, if no heat is exchanged
➡️ ΔE = q – PΔV (substituting W = –PΔV)
➡️ q = ΔE + PΔV
⚖️ Sign Conventions for work, heat and energy
➡️ W: Negative for thermochemical expansion, positive for compression
➡️ q: Positive when heat is absorbed, negative when released
➡️ ΔE: Positive if system gains energy, negative if it loses energy
🔧 Derivation of Pressure-Volume Work
Pressure-volume (PV) work
It is the mechanical work that occurs when a system expands or compresses at constant pressure.
Basic Assumptions
Consider a gas in a cylinder with a movable frictionless piston of cross-area “A” at a constant external pressure. If the force exerted by the gas on the inner wall of the piston is greater than external pressure, the piston moves upward from a height h₁ to h₂ and hence does some work. Insertion of a negative sign indicates that external pressure opposes the expansion of gas.
✨ Formula of Work
Work done by gas: W = − Force × Displacement = – F (h₂ – h₁) = −FΔh
✨ Pressure Calculation of Piston:
P = FA ⟹ F = PA
✨ Volume Change Calculation of Gas:
V = A⋅h ⟹ ΔV = V₂ – V₁ ⇒ ΔV = Ah₂ – Ah₁ ⇒ ΔV = A (h₂–h₁) ⇒ ΔV = A⋅Δh [∵(h₂–h₁)= Δh]
✨ Calculation of Work Done by the Expansion of the Gas at Constant Pressure:
(Substituting F and ΔV) W = – PA⋅Δh ⇒ W = –P (A⋅Δh) ⇒W = – P⋅ΔV [∵A⋅Δh = ΔV] ⇒ W = –P (V₂ – V₁)
The negative sign indicates that the work is done by the system on the surrounding.
✨ Interpretation:
🔼Expansion (V₂ > V₁) → W negative (work done by system)
🔽Compression (V₁ > V₂) → W positive (work done on system)
💡 Units of Pressure-Volume (PV) Work
SI unit: Joule (J), with P in pascal and V in m³
Other unit: atm·dm³
Conversion: 1 atm·dm³ = 101.325 J
✅ Summary
➡️ First law: ΔE = q + W
➡️ P–V work: W = –PΔV
Sign conventions:
➡️ W < 0 → expansion
➡️ W > 0 → compression
➡️ q > 0 → heat absorbed
➡️ q < 0 → heat released
Q10. Discuss the applications of the first law of thermodynamics at constant pressure and constant volume. (Prove that: i) ∆H = qₚ by deriving Pressure volume work ii) ∆E = qᵥ)
🔥 Heat Exchanged at Constant Volume (qᵥ) 📦
When a reaction is carried out at constant volume (ΔV = 0), no work is done on or by the system. Consider a closed system in which qv heat (the subscript “v” specifies constant volume process) is absorbed or evolved when volume is constant. In this situation, internal energy change must equal to the heat change of the reaction. The equation of the first law of thermodynamics may be reformed as:
At constant volume (ΔV = 0), no PV work is done (W = PΔV = 0) ⚙️
ΔV = 0
W = PΔV ⇒ W = P × 0 ⇒ W = 0
By applying the First Law of Thermodynamics:
ΔE = q + W ⇒ ΔE = qᵥ + 0 ⇒ ΔE = qᵥ [qᵥ = Heat absorbed or evolved at constant volume.]
✅ Conclusion: At constant volume, the heat absorbed or evolved equals the change in internal energy of the system.
Heat absorbed → increases internal energy of the system 🔋
Heat evolved → decreases internal energy 🌡️
🔥 Heat Exchanged at Constant Pressure (qₚ) 💨
Most reactions occur in open vessels at constant pressure, allowing PV work (expansion/compression) 🔥❄️
First Law at constant pressure:
ΔE = qₚ + W
W = –PΔV (At constant pressure, Pressure-Volume work, W = –PΔV)
Therefore: ΔE = qₚ – PΔV (is the heat flow to or from the system at constant pressure)
OR
qₚ = ΔE + P ΔV
Derivation of ΔH = qₚ
Internal energy: ΔE = E₂ – E₁
Volume change: ΔV = V₂ – V₁
Therefore: qₚ = (E₂ – E₁) + P(V₂ – V₁)
qₚ = E₂ – E₁ + PV₂ – PV₁
qₚ = (E₂ + PV₂) – (E₁ + PV₁) (By arranging this equation)
Define Enthalpy: H = E + PV (E + PV is called Enthalpy, denoted by H)
For initial state (1): H₁ = E₁ + PV₁
For final state (2): H₂ = E₂ + PV₂
Substituting the values in equation (1), we get:
qₚ = H₂ – H₁
qₚ = ΔH (Heat Exchanged = Change in enthalpy) (ΔH = H₂ – H₁)
✅ Conclusion: At constant pressure, enthalpy change ΔH equals heat exchanged or energy flow qₚ.
⚖️ Relation Between ΔH and ΔE
Substitute the value of qₚ into the qₚ equation:
qₚ = ΔE + P ΔV
ΔH = qₚ = ΔE + P ΔV (for gaseous reaction only)
For reactions involving solids or liquids, ΔV ≈ 0 → PΔV ≈ 0
ΔH = ΔE (for reactions involving solids or liquids, PΔV = 0)
✅ Conclusion: For reactions of solids/liquids, enthalpy change equals internal energy change.
Q11. State, explain and prove Hess’s law of enthalpy summation. Discuss its applications.
✨Discovered by: G. H. Hess (1840)
✨Dealing Variable: to compute the enthalpy changes for cyclic thermochemical changes involving two or more
✨ Other name. Second Law of Thermochemistry/ Hess’s law of enthalpy summation⚛️
📜 Statement
If a chemical reaction can occur by more than one pathway, the total enthalpy change (ΔH) is the same, provided the initial and final states are identical.
In simple words:
The heat evolved or absorbed (i.e. total enthalpy change) in a reaction is independent of the number of steps and depends only on initial and final states.
📐 Mathematical Form
∆H = ∆H₁ + ∆H₂ + ∆H₃ OR q = q₁ + q₂ + q₃ [∆H = qₚ]
💡 Explanation with Example
⚡Consider reactant A → Z
⚡Direct path: A → Z (ΔH)
⚡Indirect path: A → X → Y → Z (ΔH₁ + ΔH₂ + ΔH₃)
⚡According to Hess’s Law, enthalpy change in direct step will be equal to the sum of the enthalpies changes of indirect steps. Thus,
∆H = ∆H₁ + ∆H₂ + ∆H₃
✅ Total enthalpy change is independent of the path
🔬 Enthalpy Change Calculation
The change in enthalpy of some reactions are measured by calorimetric method. However, experimentally it is difficult to determine change in enthalpy of very slow and very fast reactions.
Example: Combustion of carbon vs carbon monoxide
C₍ₛ₎ + O₂₍g₎ → CO₂₍g₎; …………………. ΔH° =−393.5 kJ/mol --------------- (i)
CO₍g₎ + ½ O₂₍g₎ → CO₂₍g₎;…………… ΔH° = −283.5 kJ/mol --------------- (ii)
Contradictorily, the measurement of ∆H° in the combustion of carbon to carbon monoxide is quite difficult because some of the carbon monoxide is further oxidized to carbon dioxide (subtracting equation ‘ii’ form ‘i’)
C₍ₛ₎ + ½O₂₍g₎ → CO₍g₎ ∆H° = ?
ΔH° for CO formation can be calculated indirectly using Hess’s law (considering the energy cycle of the above three reactions).
🧪 Applications of Hess’s Law
➡️Calculation of heat of reaction (ΔH)
➡️Determination of heat of formation of compounds
➡️Measurement of heat of combustion
➡️Estimation of lattice energy of substances
➡️Useful in indirect calorimetric measurements ⚡
Q12. Explain exothermic and endothermic reactions with the help of the energy diagram.
🔥 Exothermic Reactions
✨Definition: Reactions in which heat is released from the system to the surroundings, making surroundings warmer.
✨Enthalpy Change: Products have lower enthalpy than reactants → ΔH negative (–ve)
✨Nature: Energetically favorable, often spontaneous; may require initial activation energy.
✨Reaction Form: Reactants → Products + Heat (ΔH=−ve)
✨Examples:
➡️C + O₂ → CO₂, ΔH = –ve (–393.7 kJ-mol⁻¹)
➡️CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = –ve (–890 kJ-mol⁻¹)
✨General Examples:
➡️Combustion of fuels 🔥 (burning of fuel and coal, oxidation of sui gas)
➡️Neutralization ⚗️ (acid + base → salt + water)
➡️Addition or synthesis reactions ➕
➡️Bond formation 🔗
✨Energy Diagram:
➡️Reactants start at a higher energy level than products
➡️Energy released = difference between reactants and products
➡️Activation energy is small hill to start reaction
❄️ Endothermic Reactions
✨Definition: Reactions in which heat is absorbed from the surroundings into the system, making surroundings colder.
✨Enthalpy Change: Products have higher enthalpy than reactants → ΔH positive (+ve)
✨Nature: Non-spontaneous; energy is required to break bonds in reactants.
✨Reaction Form: Reactants + Heat → Products (ΔH=+ve)
✨Examples:
➡️6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂, ΔH = +ve (+2816 kJ-mol⁻¹)
➡️CH₄ → C + 2H₂, ΔH = +ve (+75 kJ-mol⁻¹)
✨General Examples:
➡️Decomposition reactions ⚡
➡️Photosynthesis 🌿
➡️Bond breaking 🔓
✨Energy Diagram:
➡️Reactants start at lower energy than products
➡️Energy absorbed = difference between products and reactants
➡️Requires activation energy to initiate reaction
✏️ Solution of Numericals of Thermochemistry from Textbook and Past Papers✏️
Q1. A gaseous chemical reaction is carried out in a cylinder under a constant external pressure of 1 atm. If during reaction, volume increases from 3 dm³ to 5 dm³ by moving the piston upward, calculate the work done and express in kJ. (Example 11.1, Page # 225]
✨Given:
➡️External pressure: P = 1 atm ⚖️
➡️Initial volume: V₁ = 3 dm³
➡️Final volume: V₂ = 5 dm³
➡️Formula: Work = −P∆V or Work = −P(V₂ – V₁) [Work done in an expansion process has negative sign]
🔥Note: Negative sign indicates work done by the system on the surroundings 🔥
✨Calculate Work in atm·dm³
➡️Work = −1 atm (5 dm³ – 3 dm³) ⇒ Work = −1 atm (2 dm³) ⇒ Work = −2 atm dm³⚙️✅
✨Convert Work to Joules
➡️Work in J = work in atm dm³ × 101.325 J = −2 × 101.325 J = −202.65 J ✅ [💡 1 atm dm³ = 101.325 J]
✨Convert Work to kJ
➡️Work in kJ = work in J ÷ 1000 = −202.65 ÷ 1000 = −0.20265 kJ or −0.203 kJ💥✅
Q2. Convert the values of following quantities (Self-assessment, Page # 225]
🔥 (i) Convert 20 calories to Joules
Given: 1 cal = 4.184 J 💡
Formula:
Conversion Factor: Multiply by 4.184 for cal → J
Energy (J) = Energy (cal) × 4.184
Calculation: 20 cal = 20 × 4.184 = 83.68 J⚡
✅ Answer: 83.68 J
⚙️ (ii) Convert 3.5 atm·dm³ to kJ
Given: 1 atm·dm³ = 101.325 J = 0.101325 kJ 🔹
Conversion Factor: Multiply by 0.101325 for atm·dm³ → kJ
Formula:
Work (kJ) = Work (atm·dm³) × 0.101325
Calculation: 3.5 × 0.101325 = 0.355 kJ 💡 ✅
Q3. Burning of petrol in an automobile engine gives carbon dioxide and water vapours. If the gases do 675 J work in pushing piston outward and the system loses 435 J heat to the surrounding, calculate the internal energy change in kJ. [Example 11.2, Page # 226]
✨Given:
‘q’ = −435 J (Heat is given out, q is −)
W = −675 J (Work is done by the system, W is −)
ΔE in kJ = ?
📐 Step 1: Apply First Law of Thermodynamics
ΔE (in J) = q + W
ΔE (in J) = (−435) + (−675)
📐 Step 2: Simplify
ΔE (in J) = −1110 J
📐 Step 3: Convert to kJ
ΔE (in kJ) = −1110 ÷ 1000 = −1.110 kJ 💡 ✅
Q4. A thermochemical process is carried out at constant pressure of 8.52 atm. If it absorbs 15.5 kJ energy from the surrounding, due to which an expansion in the volume of 4.7 dm³ is occurred. Calculate its change in internal energy. [Ans: 11.34 kJ] [Exercise Q1, Page # 237]
📌 Given:
⚡Pressure: P = 8.52 atm ⚖
⚡Volume change: ΔV = 4.7 dm³ 📏
⚡Heat absorbed: q = +15.5 kJ 🔥 (Heat is absorbed, q is +)
🔍 Find: ΔE
⚙️ Step 1: Calculation of Work Done (W)
⚡Formula for work in expansion: W = −PΔV [Work done in an expansion process has negative sign]
⚡Substitute values: Work = −8.52 atm × 4.7 dm³ = −40.044 atm·dm³ 💡 ✅
✨ Convert atm·dm³ → Joules
[1 atm·dm³ = 101.325 J 💡]
⚡W in J = −40.044 × 101.325 J = −4057.45 J 💡 ✅
✨ Convert Joules → kJ
⚡W in kJ = −4057.45 ÷ 1000 = −4.057 kJ ≈ −4.058 kJ 💡 ✅
⚙️ Step 2: Calculation of ΔE using First Law of Thermodynamics
⚡ΔE = q + W = (+15.5) + (−4.058) = 11.442 kJ ≈ 11.34 kJ 💡 ✅
Q5. Calculate the enthalpy of combustion of propane at 25°C by the given information: C₃H₈ (g) + 5O₂₍g₎ → 3CO₂(g) + 4H₂O(g) ∆H° = ? [Example 11.3, Page # 230]
📌 Given Reaction:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(g)
📌 Given Data:
ΔHᵳ°(C₃H₈) = −103.9 kJ/mol
ΔHᵳ°(CO₂) = −393.5 kJ/mol
ΔHᵳ°(H₂O) = −285.8 kJ/mol
⚙️ Formula:
ΔH°ᵣₓₙ = [∑(nₚ × ΔH°ᵳ of products)] − [∑(nᵣ × ΔH°ᵳ of reactants)] 🧪
📐 Substitution:
ΔH°ᴄомᴃ = [(3 × −393.5) + (4 × −285.8)] − [(1 × −103.9) + (5 × 0)]
📐 Simplify Products:
−1180.5 + (−1143.2) = −2323.7 kJ
📐 Simplify Reactants:
(−103.9) + (0) = −103.9 kJ
💡 Calculate ΔH:
ΔH°ᴄомᴃ = −2323.7 − (−103.9) = −2323.7 + 103.9 = −2219.8 kJ/mol 💥 ✅
Q6. Using data in following table, calculate the standard enthalpy change for each of the following reactions. [Exercise Q2, Page # 237]
📌 (i) Given Reaction:
2H₂S₍g₎ + 3O₂₍g₎ → 2H₂O₍ₗ₎ + 2SO₂₍g₎
📌 Given Data:
ΔHᵳ°(H₂S) = −20.17 kJ/mol
ΔHᵳ°(O₂) = 0 kJ/mol
ΔHᵳ°(H₂Oₗ) = −285.8 kJ/mol
ΔHᵳ°(SO₂) = −296.8 kJ/mol
⚙️ Step 1: Calculate Σ ΔHᵳ° (Products)
(2 × −285.8) + (2 × −296.8) = −571.6 − 593.6 = −1165.2 kJ
⚙️ Step 2: Calculate Σ ΔHᵳ° (Reactants)
(2 × −20.17) + (3 × 0) = −40.34 + 0 = −40.34 kJ
📐 Formula:
ΔH°ᵣₓₙ = [∑(nₚ × ΔHᵳ° of products)] − [∑(nᵣ × ΔHᵳ° of reactants)] 🧪
📐 Substitution:
ΔH°ᵣₓₙ = −1165.2 − (−40.34) = −1165.2 + 40.34 = −1124.86 kJ/mol 💥 ✅
📌 (ii) Given Reaction:
Fe₂O₃₍ₛ₎ + 3CO₍g₎ → 2Fe₍ₛ₎ + 3CO₂₍g₎
📌 Given Data:
ΔHᵳ°(Fe₂O₃) = −824.2 kJ/mol
ΔHᵳ°(CO) = −110.5 kJ/mol
ΔHᵳ°(Fe) = 0 kJ/mol
ΔHᵳ°(CO₂) = −393.5 kJ/mol
⚙️ Step 1: Σ ΔHᵳ° (Products)
(2 × 0) + (3 × −393.5) = 0 − 1180.5 = −1180.5 kJ
⚙️ Step 2: Σ ΔHᵳ° (Reactants)
(−824.2) + (3 × −110.5) = −824.2 − 331.5 = −1155.7 kJ
📐 Formula:
ΔH°ᵣₓₙ = [∑(nₚ × ΔHᵳ° of products)] − [∑(nᵣ × ΔHᵳ° of reactants)] 🧪
📐 Substitution:
ΔH°ᵣₓₙ = −1180.5 − (−1155.7) = −1180.5 + 1155.7 = −24.8 kJ/mol 💥 ✅
Q7. In the manufacturing of HNO₃ by the Ostwald process, one of the most important exothermic reactions is the oxidation of ammonia. [Exercise Q3, Page # 238]
📌 Given Reaction:
4NH₃₍g₎ + 5O₂₍g₎ → 4NO₍g₎ + 6H₂O₍g₎ (Ostwald process)
📌 Given Data:
ΔH°ᵳ NH₃ = −46.91 kJ/mol
ΔH°ᵳ NO = 90.25 kJ/mol
ΔH°ᵳ H₂O(g) = −285.8 kJ/mol
ΔH°ᵳ O₂ = 0 kJ/mol
⚙️ Step 1: Calculate Σ ΔH°ᵳ (Products)
(4 × 90.25) + (6 × −285.8) = 361 − 1714.8 = −1353.8 kJ
⚙️ Step 2: Calculate Σ ΔH°ᵳ (Reactants)
(4 × −46.91) + (5 × 0) = −187.64 + 0 = −187.64 kJ
📐 Formula:
ΔH°ᵣₓₙ = [∑(nₚ × ΔH°ᵳ of products)] − [∑(nᵣ × ΔH°ᵳ of reactants)] 🧪
📐 Substitution:
ΔH°ᵣₓₙ = −1353.8 − (−187.64) = −1353.8 + 187.64 = −1166.16 kJ/mol 💥 ✅
Q8. Calculate the standard heat of formation of acetylene (C₂H₂) by using the data of the following thermochemical equations: [Example 11.4, Page # 231]
📌 Given Thermochemical Equations:
(i) C₍ₛ₎ + O₂₍g₎ → CO₂₍g₎ ----------------------------- ΔH = −393.5 kJ
(ii) H₂₍g₎ + ½O₂₍g₎ → H₂O₍ₗ₎ -------------------------- ΔH = −285.8 kJ
(iii) C₂H₂₍g₎ + ⁵/₂O₂₍g₎ → 2CO₂₍g₎ + H₂O₍ₗ₎ ----------- ΔH = −1299.5 kJ
(iv) 2C₍ₛ₎ + H₂₍g₎ → C₂H₂₍g₎ -------------------------- ΔHᵳ = ? (Desired equation)
⚙️ Adjust given equations (Hess’s Law):
(i) Multiply by 2 (because target has 2C)… 2C₍ₛ₎ + 2O₂₍g₎ → 2CO₂₍g₎ ΔH = −787.0 kJ
(ii) Keep as it is (as it has 1 H₂)… H₂₍g₎ + ½O₂₍g₎ → H₂O₍ₗ₎ ΔH = −285.8 kJ
(iii) Reverse, change sign of ΔH (C₂H₂ is now product)… 2CO₂₍g₎ + H₂O₍ₗ₎ → C₂H₂₍g₎ + ⁵/₂O₂₍g₎ ΔH = +1299.5 kJ
📐 Final Step:
(iv) Add the three equations with their ΔH (Hess’s Law)…
2C₍ₛ₎ + H₂₍g₎ → C₂H₂₍g₎ ΔH = 226.7 kJ/mol ✅
Q9. Iso octane (C₈H₁₈) is an efficient fuel with a high octane rating. The combustion of (C₈H₁₈) in an international combustion engine is represented in the following thermochemical equation. Find its standard heat of combustion. [Exercise Q4, Page # 238]
📌 Given Reaction:
C₈H₁₈₍ₗ₎ + 12½ O₂₍g₎ → 8CO₂₍g₎ + 9H₂O₍ₗ₎ (ΔH° = ?)
📌 Given Data:
ΔHᵳ° CO₂₍g₎ = −393.5 kJ/mol
ΔHᵳ° H₂O₍ₗ₎ = −285.8 kJ/mol
ΔHᵳ° C₈H₁₈₍ₗ₎ = −223.8 kJ/mol
⚙️ Step 1: Calculate Σ ΔH°ᵳ (Products)
(8 × −393.5) + (9 × −285.8) = −3148 + (−2572.2) = −5720.2 kJ
⚙️ Step 2: Calculate Σ ΔH°ᵳ (Reactants)
(−223.8) + (12.5 × 0) = −223.8 kJ
📐 Formula (Hess’s Law):
ΔH° combustion = [∑(nₚ × ΔH°ᵳ of products)] − [∑(nᵣ × ΔH°ᵳ of reactants)] 🧪
📐 Substitution:
ΔH° combustion = −5720.2 − (−223.8) = −5720.2 + 223.8 = −5496.4 kJ/mol 💥 ✅
Q10. Glycerol (C₃H₈O₃) is a well-known organic compound due to its versatile uses. Calculate the standard enthalpy of formation of Glycerol from the data given below.
C₍ₛ₎ + O₂₍g₎ → CO₂₍g₎ (ΔH° = −393.5 kJ/mol)
H₂₍g₎ + ½O₂₍g₎ → H₂O₍ₗ₎ (ΔH° = −285.8 kJ/mol)
C₃H₈O₃₍ₗ₎ + 3½ O₂₍g₎ → 3CO₂₍g₎ + 4H₂O₍ₗ₎ (ΔH° = −1654.1 kJ/mol)
3C₍ₛ₎ + 4H₂₍g₎ + 3/₂O₂ → C₃H₈O₃₍ₗ₎ (ΔHᵳ° = ?) [Exercise Q5, Page # 238]
📌 Target Equation:
3C₍ₛ₎ + 4H₂₍g₎ + 3/₂O₂ → C₃H₈O₃₍ₗ₎ (ΔHᵳ° = ?)
📌 Given Thermochemical Equations:
C₍ₛ₎ + O₂₍g₎ → CO₂₍g₎ (ΔH° = −393.5 kJ/mol)
H₂₍g₎ + ½O₂₍g₎ → H₂O₍ₗ₎ (ΔH° = −285.8 kJ/mol)
C₃H₈O₃₍ₗ₎ + 3½ O₂₍g₎ → 3CO₂₍g₎ + 4H₂O₍ₗ₎ (ΔH° = −1654.1 kJ/mol)
⚙️ Steps (Hess’s Law):
1️⃣ Because the target equation has 3C as a reactant, we multiply the first equation and its ΔH by 3.
2️⃣ Because the target equation has 4H₂ as a reactant, we multiply the second equation and its ΔH by 4.
3️⃣ Because the target equation has C₃H₈O₃ as a product, we reverse the third equation; the sign of ΔH is therefore changed.
4️⃣ We then add the three equations with their enthalpy changes in accordance with Hess’s law.
Q11. Use the data provided below for the formation of RbCl₍ₛ₎, write thermochemical equations for all the steps involved in the Born Haber cycle and determine the enthalpy of formation of RbCl₍ₛ₎.
Sublimation energy of Rb₍ₛ₎ = 82 kJ/mol
Ionization energy of Rb(g) = 403 kJ/mol
Dissociation energy of Cl₂(g) = 242 kJ/mol
Electron affinity of Cl₂(g) = −348.5 kJ/mol
Lattice energy of RbCl₍ₛ₎ = −689 kJ/mol
Since, according to Hess’s law overall enthalpy change of a cyclic thermochemical process is zero, the sum of all five steps involved in the formation of solid ionic compound like RbCl(s) will get heat of formation of RbCl₍ₛ₎. Thermochemical equations associated with Born Haber cycle in the formation of RbCl(s) may be written as:
☀️ Sublimation:
Rb₍ₛ₎ → Rb₍g₎...................... ΔH°ᵴᴜᴮ = +82 kJ/mol
⚡ Ionization:
Rb₍g₎ → Rb⁺₍g₎ + ē ............... ΔH°ᵻᴇ = +403 kJ/mol
🧨 Dissociation:
½Cl₂₍g₎ → Cl₍g₎................. ΔH°ᴅ = ½ × +242 kJ/mol
🧲 Electron Affinity:
Cl₍g₎ + ē → Cl⁻₍g₎ ............... ΔH°ᴇѧ = −348.5 kJ/mol
🏗️ Lattice Energy:
Rb⁺₍g₎ + Cl⁻₍g₎ → RbCl₍ₛ₎ .......... ΔH°ʟᴇ = −689 kJ/mol
🔥 Formation of Ionic Solid (Heat of Formation):
Rb₍g₎ + Cl₍g₎ → RbCl₍ₛ₎............. ΔH°ᵳ = −431.5 kJ/mol
📐 Calculation Using Born-Haber Equation:
ΔH°ᵳ = ΔH°ᵴᴜᴮ + IE + ½D + EA + U
Or
ΔH°ᵳ = ΔH°ᵴᴜᴮ + ΔH°ᵻᴇ + ½ΔH°ᴅ + ΔH°ᴇѧ + ΔH°ʟᴇ
ΔH°ᵳ (RbCl) = 82 + 403 + 121 − 348.5 − 689 = −431.5 kJ/mol ✅
Q12. Draw a fully labeled Born Haber cycle for Rubidium chloride (RbCl) and determine the lattice energy by using the following values. (all in kJ/mol)
• I.P1st of Rb = 403 kJ/mol
• Electron affinity of Cl = −349 kJ/mol
• Bond energy of Cl₂ = 242 kJ/mol
• Sublimation energy of Rb = 86.5 kJ/mol
• Heat of formation of RbCl = −430.5 kJ/mol
Since, according to Hess’s law overall enthalpy change of a cyclic thermochemical process is zero, the sum of all five steps involved in the formation of solid ionic compound like RbCl₍ₛ₎ will get heat of formation of RbCl₍ₛ₎. Thermochemical equations associated with Born Haber cycle in the formation of RbCl₍ₛ₎ may be written as:
☀️ Sublimation:
Rb₍ₛ₎ → Rb₍g₎ ................. ΔH°ᵴᴜᴮ = +86.5 kJ/mol
⚡ Ionization:
Rb₍g₎ → Rb⁺₍g₎ + ē ............ ΔH°ᵻᴇ = +403 kJ/mol
🧨 Dissociation:
½Cl₂₍g₎ → Cl₍g₎ ............... ΔH°ᴅ = ½ × 242 = +121 kJ/mol
🧲 Electron Affinity:
Cl₍g₎ + ē → Cl⁻₍g₎............ ΔH°ᴇѧ = −349 kJ/mol
🏗️ Lattice Energy:
Rb⁺₍g₎ + Cl⁻₍g₎ → RbCl₍ₛ₎......... ΔH°ʟᴇ = ?
📐 Calculation Using Born-Haber Equation:
ΔH°ᵳ = ΔH°ᵴᴜᴮ + ΔH°ᵻᴇ + ½ΔH°ᴅ + ΔH°ᴇѧ + ΔH°ʟᴇ
−430.5 = 86.5 + 403 + 121 − 349 + ΔH°ʟᴇ
ΔH°ʟᴇ = −430.5 − (86.5 + 403 + 121 − 349)
ΔH°ʟᴇ = −430.5 − 261 = −692 kJ/mol ✅
Welcome to Inam Jazbi’s ultimate guide to XI Chemistry – Thermochemistry (Chapter # 11)! 🔥 Whether you're preparing for board exams or competitive tests like MDCAT/ ECAT, this blog is packed with model test questions, solved numericals, and MCQs that will help you ace Thermochemistry!
💥 جونؔ ایلیا 🎯 💥
💔 صرف زندہ رہے ہم تو مر جائیں گے
🌌 سب بچھڑ جائیں گے سب بکھر جائیں گے
🌅 صبح ہوتے ہی سب کام پر جائیں گے
⚡ کیا ستم ہے کہ ہم لوگ مر جائیں گے
🕊️ بے خبر آئے ہیں بے خبر جائیں گے
🔥 جونؔ ایلیا ۔ غزل 🔥
🕊️ ہر طرف ہو رہی ہے یہی گفتگو، تم کہاں جاؤ گے ہم کہاں جائیں گے
⏳ وقت کی اس مسافت میں بے آرزو، تم کہاں جاؤ گے ہم کہاں جائیں گے
🌌 ہیں یہ سرگوشیاں دربدر کوبکو، تم کہاں جاؤ گے ہم کہاں جائیں گے
💔 تھا سراب اپنا سرمایۂِ جستجو، تم کہاں جاؤ گے ہم کہاں جائیں گے
🌙 بس گزرنے کو ہے موسمِ ہائے و ہُو، تم کہاں جاؤ گے ہم کہاں جائیں گے
🌹 گُل زمیں سے ابلنے کو ہے اب لہو، تم کہاں جاؤ گے ہم کہاں جائیں گے؟
🍷 آخرِ شب ہے خالی ہیں جام و سُبو، تم کہاں جاؤ گے ہم کہاں جائیں گے؟
🔥 بس گزرنے کو ہے موسمِ ہاؤ و ہُو، تم کہاں جاؤ گے ہم کہاں جائیں گے؟
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
💭 جانے کیسے لوگ وہ ہوں گے جو اس کو بھاتے ہوں گے
🔥 میرے بجھنے کا نظارہ کرنے آ جاتے ہوں گے
💔 آنے والوں سے کیا مطلب آتے ہیں آتے ہوں گے
🌌 یوں ہی میرے بال ہیں بکھرے اور بکھر جاتے ہوں گے
💔 وہ جو سمٹتے ہوں گے ان میں وہ تو مر جاتے ہوں گے
🌙 یعنی میرے بعد بھی یعنی سانس لیے جاتے ہوں گے
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
💭 ہر لمحہ جی رہے ہیں مگر خیریت سے ہیں
🌌 دشتِ گماں کے خاک بسر خیریت سے ہیں
🕊️ اللہ اور تمام بشر خیریت سے ہیں
💧 مژگانِ خشک و دامنِ تر خیریت سے ہیں
🌟 یعنی تمام اہلِ نظر خیریت سے ہیں
🔥 سودائیانِ حال کے سر خیریت سے ہیں
💭 شکوے کی بات ہے، وہ اگر خیریت سے ہیں
🏚️ خاک اڑ رہی ہے اور کھنڈر خیریت سے ہیں
✨ جونؔ! ایک معجزہ ہے اگر خیریت سے ہیں
📜 اور اپنے صاحبانِ ہنر خیریت سے ہیں
⚔️ برگستوان و تیغ و تبر خیریت سے ہیں
🚪 بس در ہے اور بندئہ در خیریت سے ہیں
📖 ورنہ تمام جوشؔ و جگرؔ خیریت سے ہیں
🌙 باقی جو ہیں وہ شام و سحر خیریت سے ہیں
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
☀️ دھوپ آنگن میں پھیل جاتی ہے
🌆 شہر کوچوں میں خاک اڑاتی ہے
🕰️ میز پر گرد جمتی جاتی ہے
🌙 اب کسے رات بھر جگاتی ہے
💔 بے دلی بھی تو لب ہلاتی ہے
🌸 زندگی خواب کیوں دکھاتی ہے
💭 خواہشِ غیر کیوں ستاتی ہے
😮 ہمنشیں! سانس پھول جاتی ہے
👀 غور کرنے پہ یاد آتی ہے
💔 روز ایک چیز ٹوٹ جاتی ہے
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
💭 یہ دل کے خواب کی صورت نہ رائیگاں جائے
🌌 یہ شہر شہر کی محنت نہ رائیگاں جائے
💡 یہ خود سے اپنی رفاقت نہ رائیگاں جائے
🌙 کہیں یہ حسنِ طبیعت نہ رائیگاں جائے
💔 ہمارا عہدِ محبت نہ رائیگاں جائے
✨ یہ اجتماع یہ صحبت نہ رائیگاں جائے
🌟 رہے خیال یہ مہلت نہ رائیگاں جائے
🔥 تیرے جنون کی حالت نہ رائیگاں جائے
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
💭 شوق اس کا کمال ہے، تاحال
😔 جی ہمارا نڈھال ہے، تاحال
⚡ شوقِ بحث و جدال ہے، تاحال
❓ ہر جواب اک سوال ہے، تاحال
💔 دل میں زخمِ کمال ہے، تاحال
🌟 ذہن میں اک مثال ہے، تاحال
🌿 ہوسِ اندمال ہے، تاحال
🌸 آپ اپنی مثال ہے، تاحال
💔 بے امیدِ وصال ہے، تاحال
🌙 وہ جو تھا اک ملال ہے، تاحال
🎨 رنگ بے خدوخال ہے، تاحال
🦌 تو غزل کا غزال ہے، تاحال
💭 تجھ کو پانا محال ہے، تاحال
😔 پر وہی میرا حال ہے، تاحال
💥 غزل ۔۔۔۔ جونؔ ایلیا 💥
🌙 ہم ہیں حیران اپنی حیرت کے
💔 تم نہیں تھے مری طبیعت کے
🌟 کیا عجب عیش تھے شکایت کے
🎁 یہ عطیے ہیں دل کی عادت کے
⚖️ ہم ہی مفتی ہیں اہلسنت کے
🛠️ نہیں خوگر کسی مشقت کے
🌙 ہیں یہ لمحے تمام ہجرت کے
📖 ہیں عجب معجزے حکایت کے




