Solubility Product (Ksp) , Solubility & Precipitation Numericals Made Super Easy | The Ultimate MDCAT Chemistry Numericals | Learn Chemistry by Inam Jazbi

Welcome to Learn Chemistry by Inam Jazbi, the platform where complex chemistry concepts become super-easy. Today’s post covers one of the most high-yield MDCAT topicsSolubility Product (Ksp), Solubility, Ionic Equilibria, and Precipitation Numericals. If you want to master Ksp tricks, shortcut methods, exam-focused questions, and the logic behind precipitation, this guide is made exactly for you.

Students often get confused when to precipitate, how to compare Ksp values, and how to solve solubility numericals quickly. In this blog, everything is explained in a simple, colourful, exam-oriented style so you can score full marks in MDCAT and board exams.
Let’s start mastering Ksp — the smart way!

Q1. Write the solubility product expression for the following slightly soluble salts; CaSO4, PbClFe(OH)3, BaF2, Li2C2O4, MgCO3, Ag3PO4.                                                        

Solution

To write Ksp expression, first of all write the balanced equation of ionic equilibrium of given compound to find out coefficient of each ion. Then Ksp expression is written as product of ionic concentrations of cation and anion of given compound enclosed in square bracket with each concertation is raised to power equal to the coefficient of respective ion.

CaSO4(s) ⇌ Ca2+(aq) + SO42−(aq)     Ksp = [Ca2+] [SO42−]

PbCl2(s)  Pb2+(aq) + 2Cl(aq)      Ksp = [Pb2+] [Cl]2

Fe(OH)3(s) ⇌ Fe3+(aq) + 3OH(aq) Ksp = [Fe3+] [OH]3


Q. Write down the solubility product expressions for the following sparingly soluble salts along with their units

(i) BaF2             

(ii) Li2C2O4        

(iii) MgCO3  

(iv) Ag3PO3      

(v) CaSO4

(vi) AlF3         

(vii) MgCr2O7   

(viii) PbI2 

(ix) Mg(OH)2   

(x) Mg3(PO4)2             

(xi) PbCrO4 

Answer


Q. Write the equation for dissociation of following salts and write down Ksp expression.

(i) PbBr2            (ii) Hg2CrO4   (iii) BaC2O4                   (iv) Fe(OH)3

(v) Ag2CO3     (vi) Sb2S3         (vii) AgCNS                   (viii) Ag3PO4

(ix) Li3Na3(AlF6)2        (x) Hg2I2          

(xi) Ba3(PO4)2             (xii) Ca5(PO4)3F

(xiii) A3B4                    (xiv) CaF2        

(xv) Ag2CrO4

Answer


Calculating KSP from given solubility Step-by-Step

Step 1 — Write the dissociation equation.
Write the solid ⇌ ions showing stoichiometric coefficients.

Step 2 — Define solubility, s.
Let s = molar solubility (mol L⁻¹) = moles of formula units dissolved per litre.

Step 3 — Express ion concentrations in terms of s.
From the stoichiometry, write each ion concentration as a function of s (and of any fixed/common ions present).

Step 4 — Write the Ksp expression.
Multiply the equilibrium concentrations raised to their powers (from the balanced dissociation).

Step 5 — Substitute concentrations and solve for Ksp (or solve for s if Ksp is given).
Do algebra to get Ksp in numeric form. If solubility is given in g per volume convert to mol L⁻¹ first:
mol L⁻¹ = (mass in g per L) / (molar mass in g mol⁻¹)

Step 6 — Watch units and significant figures.
Report Ksp as a dimensionless number (concentration units cancel out) using appropriate significant figures.


Common patterns (remember these!)

MX ⇌ M⁺ + X⁻[M] = s, [X] = sKsp = s²

MX₂ ⇌ M²⁺ + 2X⁻[M] = s, [X] = 2sKsp = [M][X]² = s(2s)² = 4 s³

M₂X₃ ⇌ 2M³⁺ + 3X²⁻[M] = 2s, [X] = 3sKsp = (2s)²(3s)³ = 4·27·s⁵ = 108 s⁵

(Use the stoichiometric coefficients to build the expression.)


Q2.   Silver sulphate (Ag2SO4) is used for medicinal purpose to fill wounds. Its solubility in water at 25oC  is 1.43 × 102 mol/dm3. What will be its Ksp? (Example 7.8; Page 157)

Solution

The net ionic equation for ionization of Ag2SO4 is:

Ag2SO4(s)  ⇌   2Ag+(aq)  +    SO42–(aq)

1 mol               2mol                1mol

x M                  2x M                  x M

Solubility of Ag2SO4 = x =  1.05 × 10–5 mol/dm3

[Ag+]    = 2x = 2 × 1.43 x 102 = 2.86 × 102 mol/dm3

[SO42–] =  x   = 1.43 × 102 mol/dm3

KSP of Ag2SO4 =  ?

The KSP expression is:

KSP  = [Ag+]2 [SO42–]  

KSP  =   (2.86 × 102 mol/dm3)2  x  (1.43 × 102 mol/dm3)

KSP  =    1.17 × 10–5 mol3/dm9

 

Q3. The Ksp of Zn(OH)2 is 2.1 × 10–16 mol3/dm9 at 25C. Calculate its solubility in g/dm3 (The atomic mass of Zn = 65.4).   

 Solution

KSP of Zn(OH)2       = 2.1 x 10–16 mol3/dm9

Let,

Solubility of Zn(OH)2 = x mol/dm3

The ionization equation of Zn(OH)2  is:

Zn(OH)₂(s) ⇌ Zn²⁺                 + 2 OH⁻
x mol/dm³      x mol/dm³         2x mol/dm³

Solubility in mol/dm³

The KSP expression is:

KSP = [Zn2+]  [OH]2 ⇒  2.1 x 10–16 = (x). (2x)2  ⇒ 2.1 x 10–16 =    (x).(4x2)  ⇒   4x3 = 2.1 x 10–16

Solubility in g/dm³

Solubility of Zn(OH)2 in mol/dm³           = 3.74 × 10−6 mol/dm³

Molecular mass of Zn(OH)2 = 65.4 + 2(16) + 2(1) = 99.4 g/mol

Solubility of Zn(OH)2 in g/dm³  = Solubility in mol/dm³   ×   Molar mass (molecular mass)

Solubility of Zn(OH)2 in g/dm³  = 3.74 × 10−6 × 99.4 

Solubility of Zn(OH)2 in g/dm³ = 3.717 × 10−4 g/dm³

Q4.Lead fluoride (PbF2) is a high melting white solid used in glass coating to reflect IR rays. Its solubility in water at 25 is 0.58 g/dm3. Calculate its Ksp. (Atomic mass of Pb = 207 and F = 19) 5.3 × 10−8 mol3/dm9

Solution

Solubility of PbF2 = 0.58 g/dm3

Molar mass of PbF2 =  207 +  2(19) = 245g/mol

Solubility of PbF2 in mol/dm3 = x = Solubility in g/dm3/ molar mass  =0.58 /245  = 2.37 × 10–3 mol/dm3

The net ionic equation for ionization of Ag2SO4 is:

PbF2(s)  ⇌   Pb2+(aq)  +  2F(aq)

1 mol            1mol             2mol

x M                 x M              2x M

Solubility of PbF2 = x = 2.37 × 10–3 mol/dm3

[Pb2+] = x = 2.37 ×10–3 mol/dm3

[F] =  2x   = 2 × 2.37 × 10–3 mol/dm3 = 4.74 × 10⁻³ mol/dm³

KSP of PbF2 =  ?

The KSP expression is:

KSP  = [Pb2+] [F]2  = (2.37 × 10–3 mol/dm3)  ×  (4.74 × 10⁻³ mol/dm3)2 =  (2.37 × 10–3) × (2.25×10−5) mol3/dm9

KSP  =    5.33 × 10–5 mol3/dm9

Q1. Calculate KSP of BaSO4 whose solubility is 1.05 × 10–5 mole/dm3.

Solution

The net ionic equation for ionization of BaSO4 is:

BaSO4 (s)  ⇌   Ba2+(aq)  +  SO42–(aq)

1 mol              1mol            1mol

x M                 x M                x M

Solubility of BaSO4 = x =  1.05 × 10–5 mol/dm3

[Ba2+]   = x = 1.05 × 10–5 mol/dm3

[SO42–] =  x = 11.05 × 10–5 mol/dm3

KSP of BaSO4 =  ?

The KSP expression is:

KSP  = [Ag+]2 [SO42–]  =   (1.05 × 10–5 mol/dm3)  ×  (1.05 × 10–5 mol/dm3)

KSP  =  1.1 x 10–10 mol2/dm6


Q2. Calculate KSP of BaF2 when its solubility is 0.0065 M at 25°C.

Solution

The ionization equation of BaF2 is:

BaF2                                Ba2+                      +             2F

x M                                      x M                                      2x M

0.0065 M            0.0065 M            2(0.0065) M

Solubility of BaF2 = x =  0.0065 M

[Ba2+]  = x = 1.05 x 10–5 M

[F]   =  2x = 2 × 0.0065  M

KSP of BaF2 = ?

The KSP expression is:

KSP    = [Ba2+]  [F]2        

KSP    = (0.0065)  (2 × 0.0065)2  = 0.0065  ×  (0.013)2     = 0.0065  ×  0.000169 = 0.00000109

KSP  = 1.09 × 10–6 M3

Q3. Calculate KSP of AgCl at 25°C when its solubility is 1.4 x 10–3 g/dm3.

Solution

Solubility of AgCl = 1.4 × 10–3 g/dm3

Molar mass of AgCl   =  108  +  35.5 = 143.5 g

Solubility of AgCl in mol/dm3 = Solubility in g dm–3/ molar mass  =1.4 × 10–3 /143.5  = 9.75 × 10–6 M

The ionization equation of AgCl is:

AgCl                            Ag+                +      Cl

x M                                 x M                         x M

9.75 × 10–6 M         9.75 × 10–6 M    9.75 × 10–6 M

Solubility of AgCl = x =  9.75 × 10–6 M

[Ag+]  = x = 9.75 × 10–6 M

[Cl] = x = 9.75 × 10–6 M

KSP of AgCl = ?

The KSP expression is:

KSP = [Ag+] [Cl] = 9.75 × 10–6 M × 9.75 × 10–6 M2 

KSP  = 9.5 × 10–11 M2


Calculating Solubility from given KSP


Q1. Find the solubility of PbCrO4 when its KSP is 2.8 × 10–13 mol2/dm6.

Solution

KSP of PbCrO4     = 2.8 x 10–13 mol2/dm6

Let,

Solubility of PbCrO4= x mol/dm3

The ionization equation of PbCrO4 is:

PbCrO4                 Pb2+                      +      CrO42−

x mol/dm3            x mol/dm3                   x mol/dm3

Solubility in mol/dm3

The KSP expression is:

KSP = [Pb2+]  [CrO42−]  ⇒   2.8 x 10–13 = (x).(x)    ⇒   x2     = 2.8 x 10–13 ⇒   x = √2.8 x 10–13

x =   5.29 × 10–7 mol/dm3

Solubility in g/dm3

Solubility of PbCrO4 in mol/dm3= 5.29 × 10–7 mol/dm3

Molecular mass of PbCrO= 207 + 52 + 4(16) = 323 g/mol

Solubility of PbCrO4 in g/dm3 = Solubility in mol/dm3   ×   Molar mass (molecular mass)

Solubility of PbCrO4 in g/dm3    = 5.29 × 10–7  ×  323 = 1.70 × 10–4 g/dm3

Q2. Find the solubility of MgF2 when its KSP is 7.26 × 10–9 mol3/dm9.

Solution

KSP of MgF2        = 7.26 × 10–9 mol3/dm9

Let,

Solubility of MgF2 = x mol/dm3

The ionization equation of MgF2 is:

MgF2                       Mg2+        +             2F

x mol/dm3           x mol/dm3             2x mol/dm3

The KSP expression is:

KSP = [Mg2+]  [F]2 ⇒  7.26 × 10–9 = (x). (2x)2  ⇒ 7.26 × 10–9 = (x).(4x2)  ⇒   4x3 = 7.26  ×  10–9

x3 = 7.26  × 10–9/4  ⇒  x3 = 1.815  ×  10–9 ⇒   x = ∛1.815  ×  10–9  

x  = 1.219 × 10–3 mol/dm3

Here,

Solubility of MgF2 in g/dm3= 1.219 x 10–3 mol/dm3

Molecular weight of MgF2  = 24 + 38 = 62 g

Solubility of MgF2 in g/dm3 = Solubility in mol/dm3   x   Molar mass (molecular mass)

Solubility of MgF2 in g/dm3 = 1.219 × 10–3  x  62 = 7.55 × 10–2 g/dm3

Q3.   What is the ionic concentration of Ag+ and CrO42− ions in a saturated solution of Ag2CrO4 at 25oC? Ksp of Ag2CrO4 is 1.9  × 10-12 mol3/dm9 (KB – 2015)

Solution

KSP of Ag₂CrO₄  = 1.9  x 10−12 mol3/dm9

Let,

Solubility of Ag₂CrO₄  =  x mol/dm3

The ionization equation of Ag₂CrO₄  is:

Ag₂CrO₄        ⇌ 2Ag⁺                 + CrO₄²⁻
1                            2                          1
x mol/dm³       2x mol/dm³       x mol/dm³

The KSP expression is:

KSP = [Ag+]2 [CrO42–]  ⇒  1.9  x 10–12  = (x).(2x)2  ⇒ 1.9  x 10–12 = (x).(4x2)  ⇒   4x3 = 1.9  x 10–12

x = 7.8 × 10⁻  moldm⁻³

 

[Ag⁺]² = 2x = 2 × 7.8 × 10 = 1.56 × 10⁻⁴ moldm⁻³

[CrO₄²⁻] = x = 7.8 × 10⁻⁵ moldm⁻³

Q4.   If the concentration of CrO42−​ ions in a saturated solution of silver chromate is 2×10−4; calculate solubility product of silver chromate.

Solution

The ionization equation of Ag2CrO4 is:

Ag2CrO4                          2Ag+                 +             CrO42–

1                                             2                                       1

x mol/dm3                 2x mol/dm3                      x mol/dm3

2×10−4 mol/dm3       2 (2×10−4)mol/dm3      2×10−4mol/dm3          

On the basis of this equation, the concentration of Ag+​ ion will be double of the concentration CrO42– ions.

[Ag+]        = 2 × 2 ×10−4 M = 4 ×10−4 M

[CrO42−​] = 2 ×10−4 M

Ksp ​= [Ag+]2[CrO42−​] = [4 ×10−4 M]2 [2 ×10−4 M] = 3.2×10−11 M3



Calculating precipitation occurs or not from Text Book




Calculating precipitation occurs or not from Past Papers






Post a Comment

Previous Post Next Post