Balancing of Redox Reactions by Ion Electron Method

Balancing of Redox Reactions by Ion Electron Method

 Rules for Balancing Redox Reactions by Ion Electron Method

1.  Convert molecular equation into ionic equation. Split ionic equation into two half-reactions or equations (one for the species that is oxidized and its products and for the species that is reduced and its products).

2. Balance the atoms other than O and H by inserting suitable coefficients in each half reaction separately.

3 (a).   For reactions in an acidic medium, add one H2O for each O atom to balance O          and one H+ for each H atom to balance H. The O atoms are balanced first.

   (b)    For reactions in a basic medium, to balance O atom add two OH per O atom           to the side that is deficient in O while add one H2O on the other side at the               same time. To balance H atom, add one  H2O per H atom to the side where H is         less while add one OH on the other side at the same time.

OR

For reactions in a basic medium, balance O and H atoms as balanced in acidic medium. Then add OH ions to both sides of the equation equal to the number of H+ ions.  (If there is no H+ then do not add OH ions). Where H+ and OH appear on the same side of the equation, combine the ions to give H2O.

4.Balance the charge in each half equations by inserting e¯ (electrons) as a reactant or product.

5. Equalize the loss and gain of electrons in both half equations by multiplying one or both half reactions by appropriate co-efficients.

6. Add the two half equations after canceling electrons. If H+, OH or H2O appears on both sides of the final equation, cancel out the duplications. (To verify equation is atomically and electrically balanced, count net charges on both sides of the equation, if charges are same then equation is balanced).

Balance the following equation in acidic medium by I.E.M.


Solution
First molecular equation splits into ionic form and then oxidation number of only those species have been written who have undergone any change (the species that do not undergo any change in oxidation no. do not appear in equation).
Separate ionic equation into two half-reactions:-






Assignment Equations

Q1.      Balance the following equations by I.E.M. in Acidic Medium.

1.
MnO4¯
+
Fe2+
¾®
Mn2+
+
Fe3+

2.
MnO4¯
+
Cl¯
¾®
Mn2+
+
Cl2

3.
MnO4¯
+
¾®
Mn2+
+
I2

4.
MnO4¯
+
C2O42¯
¾®
Mn2+
+
CO2

5.
MnO4¯
+
NO2¯
¾®
Mn2+
+
NO3¯

6.
MnO4¯
+
H2O2
¾®
Mn2+
+
O2

7.
MnO4¯
+
SO2
¾®
Mn2+
+
H2SO4

8.
MnO4¯
+
SO32¯
¾®
Mn2+
+
SO42¯










9.
Cr2O72¯
+
Fe2+
¾®
Cr3+
+
Fe3+

10.
Cr2O72¯
+
Zn
¾®
Cr3+
+
Zn2+

11.
Cr2O72¯
+
Cl¯
¾®
Cr3+
+
Cl2

12.
Cr2O72¯
+
¾®
Cr3+
+
I2

13.
Cr2O72¯
+
S2¯
¾®
Cr3+
+
S

14.
Cr2O72¯
+
I2
¾®
Cr3+
+
IO31¯

15.
Cr2O72¯
+
Cl2
¾®
Cr3+
+
ClO31¯

16.
Cr2O72¯
+
SO2
¾®
Cr3+
+
SO42¯

17.
Cr2O72¯
+
SO32¯
¾®
Cr3+
+
SO42¯










18.
Cr(OH)3
+
H2O2
¾®
CrO42¯
+
H2O

19.
BrO31¯
+
¾®
Br¯
+
I2

20.
NO3¯
+
H2S
¾®
NO
+
S


[For balanced equation see next page]

Q2.      Balance the following equations in basic medium by I.E.M.

1.
Cr(OH)3
+
H2O2
¾®
CrO42¯
+
OH¯

2.
Cr(OH)3
+
SO42¯
¾®
CrO42¯
+
SO32¯

3.
ClO¯
+
¾®
Cl¯
+
I2

4.
S2¯
+
I2
¾®
SO42¯
+

5.
Al
+
H2O
¾®
Al(OH)4¯
+
H2

6.
Cr2O3
+
Br2
¾®
CrO42¯
+
Br¯

7.
MnO4¯
+
¾®
MnO2
+
IO3¯

8.
MnO4¯
+
H2O2
¾®
MnO2
+
O2

9.
MnO4¯
+
SO32¯
¾®
MnO2
+
SO42¯

10.
MnO4¯
+
SO32¯
¾®
MnO42¯
+
SO42¯

11.
CrO42¯
+
¾®
Cr3+
+
IO3¯


[For balanced equation see below]


ANSWERS OF Q1 (IN ACIDIC MEDIUM)

1.
MnO4¯
+
8H+
+
5Fe2+
¾®
Mn2+
+
5Fe3+
+
4H2O
(+17 = +17)
2.
2MnO4¯
+
16H+
+
10Cl¯
¾®
2Mn2+
+
5Cl2
+
8H2O
(+4 = +4)
3.
2MnO4¯
+
16H+
+
10I¯
¾®
2Mn2+
+
5I2
+
8H2O
(+4 = +4)
4.
2MnO4¯
+
16H+
+
5C2O42¯
¾®
2Mn2+
+
10CO2
+
8H2O
(+4 = +4)
5.
2MnO4¯
+
6H+
+
5NO2¯
¾®
2Mn2+
+
5NO3¯
+
3H2O
(–1 = –1)
6.
2MnO4¯
+
6H+
+
5H2O2
¾®
2Mn2+
+
5O2
+
8H2O
(+4 = +4)
7.
2MnO4¯
+
6H+
+
5SO2  +  2H2O
¾®
2Mn2+
+
5H2SO4


(+4 = +4)
8.
2MnO4¯
+
6H+
+
5SO32¯
¾®
2Mn2+
+
5SO42¯
+
3H2O
(–6 = –6)
9.
Cr2O72¯
+
14H+
+
6Fe2+
¾®
2Cr3+
+
6Fe3+
+
7H2O
(+24 = +24)
10.
Cr2O72¯
+
14H+
+
3Zn
¾®
2Cr3+
+
3Zn2+
+
7H2O
(+12 = +12)
11.
Cr2O72¯
+
14H+
+
6Cl¯
¾®
2Cr3+
+
3Cl2
+
7H2O
(+6 = +6)
12.
Cr2O72¯
+
14H+
+
6I¯
¾®
2Cr3+
+
3I2
+
7H2O
(+6 = +6)
13.
Cr2O72¯
+
14H+
+
3S2¯
¾®
2Cr3+
+
3S
+
7H2O
(+6 = +6)
14.
5Cr2O72¯
+
34H+
+
3I2
¾®
10Cr3+
+
6IO3¯
+
17H2O
(+24 = +24)
15.
5Cr2O72¯
+
34H+
+
3Cl2
¾®
10Cr3+
+
6ClO3¯
+
17H2O
(+24 = +24)
16.
Cr2O72¯
+
2H+
+
3SO2
¾®
2Cr3+
+
3SO42¯
+
H2O
(0 = 0)
17.
Cr2O72¯
+
8H+
+
3SO32¯
¾®
2Cr3+
+
3SO42¯
+
4H2O
(0 = 0)
18.
2Cr(OH)3
+


3H2O2
¾®
2CrO42¯
+
4H2O
+
4H+
(0 = 0)
19.
BrO31¯
+
6H+
+
6I¯
¾®
Br¯
+
3I2
+
3H2O
(–1 = –1)
20.
2NO3¯
+
2H+
+
3H2S
¾®
2NO
+
3S
+
4H2O
(0 = 0)


ANSWERS OF Q2 (IN BASIC MEDIUM)

1.
2Cr(OH)3
+
4OH¯
+
3H2O2
¾®
2CrO42¯
+
8H2O




(–4 = –4)
2.
2Cr(OH)3
+
4OH¯
+
3SO42¯
¾®
2CrO42¯
+
5H2O
+
2SO32¯


(–10 = –10)
3.
ClO¯
+
H2O
+
2I¯
¾®
Cl¯
+
2OH¯
+
I2


(–3 = –3)
4.
S2¯
+
8OH¯
+
4I2
¾®
SO42¯
+
4H2O
+
8I2


(–10 = –10)
5.
2Al
+
2OH¯
+
6H2O
¾®
2Al(OH)41¯
+
3H2




(–2 = –2)
6.
Cr2O3
+
10OH¯
+
3Br2
¾®
2CrO42¯
+
5H2O
+
6Br¯


(–10 = –10)
7.
2MnO4¯
+
H2O
+
¾®
2MnO2
+
2OH¯
+
IO3¯


(–3 = –3)
8.
2MnO4¯
+
3H2O2


¾®
2MnO2
+
2OH¯
+
3O2
+
2H2O
(–2 = –2)
9.
2MnO41¯
+
H2O
+
3SO32¯
¾®
2MnO2
+
2OH¯
+
3SO42¯


(–8 = –8)
10.
2MnO41¯
+
2OH¯
+
SO32¯
¾®
2MnO42¯
+
H2O
+
SO42¯


(–6 = –6)
11.
2CrO42¯
+
5H2O
+
¾®
2Cr3+
+
IO3¯
+
10OH¯


(–5 = –5)



No comments:

Post a Comment

Search This Blog

XII Stereoisomerism and Its Types