XI Stoichiometry Test Questions on Chapter # 1 (Test # 2)

 Test Questions on Chapter # 1 ………….. Stoichiometry (Test # 2)

 

IMPORTANT NUMERICALS on Stoichiometry from BOOK

 

Q1.Calculate the mass of carbon dioxide (CO2) that can be obtained by complete thermal decomposition of 50 g of lime stone (CaCO3)

CaCO3(s) → CaO(s) + CO2(g)

(Answer; 22 g)

 

Q2.Mass of 49 g of solid potassium chlorate (KClO3) on heating decomposes completely to potassium chloride (KCl) with the liberation of oxygen gas(O2)

         2KClO→ 2KCl + 3O2

 Determine volume of oxygen gas (O2) liberated at STP.

                (Answer; 13.44 dm3)

 

Q3.Silver sulphide (Ag2S) is an anti microbial agent. In an experiment, 24.8g Ag2S is reacted with the excess of hydrochloric acid as given in the following reaction:

  Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

Calculate the

(i)Mass of AgCl formed  [Answer; 28.7 g]                         

(ii)Volume of H2S produced at STP[Answer; 2.24 dm3]

(Atomic mass of Ag is 108 and S is 32)

 

Q4.On heating solid ammonium nitrate (NH4NO3), it decomposes to produce nitrous oxide (N2O) and water

NH4NO3(s) → N2O(g) + 2H2O(l)

If 200 g of ammonium nitrate is completely consumed in the reaction, calculate the:

(i) Mass of water formed                         

 (ii) Volume of N2O gas liberated at STP

(Answer; 90 g water, 56 dm3 of O2)


Q5. Calculate the volume of carbon dioxide at STP that can be produced by the complete burning of 50 dm3 of butane gas (C4H10) in the excess of supply of oxygen gas (O2).

  2C4H10(g)  + 13O2(g) → 8CO2(g) + 10H2O(g)

(Answer; 200 dm3)

 


IMPORTANT NUMERICALS on Stoichiometry from External Source

 

Q1. Calculate the volume of CO2 gas produced at standard temperature and pressure by combustion of 50 g of methane. 

 CH4 + 2O2 → CO2 +  2H2O

(Ans; 70 dm3)

 

Q2. Calculate the volume of O2 at S.T.P. produced by the complete decomposition of 540 g of N2O5

2N2O5   → 4NO2 +  O2   

(Ans; 56 dm3)

 

Q3. 100 grams of KNO3 are heated to redness. What volume of oxygen at 39°C and 765 mm pressure will evolve?               

(Karachi Board-2006)           

                                2KNO3   → 2KNO2   + O2

(Ans; 11.089 dm3)

 

Q4. Potassium chlorate if often used to generate oxygen gas in high school laboratory. If 183.7 g of KClO3 is completely burnt catalytically, what volume of oxygen gas will be obtained at 39C and 1200 torr pressure?                                                                           

                               

Q5. Calculate the volume of nitrogen gas produced by heating 800 g of ammonia at 21°C and 823 torr pressure?

2NH3→ N2+   3H2                                                                         (KB- 2014)

(Ans; 522.19 dm3)

 

Q6. CaCO3 is often used to generate CO2 gas in industry. If 200 g of CaCO3 is strongly heated, what volume of CO2 gas will be obtained at 30°C and 1200 torr pressure?                               (KB- 2017)

 CaCO3(s)  → CaO(s) +  CO2(g)

(Ans; 31. 49 dm3)


Q7.  Zinc reacts with H2SO4 (dil) as given below:

 Zn(s) + H2SO4(aq)  → ZnSO4(aq)  +   H2(g)

Calculate the mass of ZnSO4, the volume of H2 gas at STP and the number of molecules of H2 gas which will be produced by reacting 163.5 g of Zn with H2SO4.

(Ans;403.5 g of ZnSO4, 56 dm3 of H2 gas, 1.505 x 1024 molecules of H2 gas)

 

IMPORTANT NUMERICALS on Limiting Reactant from BOOK

 

Q1. How many grams of NH3 are formed when 100 g of each of the following reagents are reacted together according to following equation;          

 2NH4Cl(s)   +  Ca(OH)2(s)      CaCl2(s)    +   2NH3(g)    +  2H2O(l)

(Ans; 31.62 g)

 

Q2. 5.6 g of NH3 are allowed to react with 4.5 g of O2 according to following equation. Calculate number of moles, number of molecules, mass in gram and volume in cm3 of nitric oxide evolved at STP.

               4NH3(g)  + 5O2(g)  → 4NO(g)   + 6H2O(g)

(Ans; 0.1128 mol NO, 6.79 x 1023 molecules of NO, 3.384 g NO, 2526.72 cm3 NO)

 

Q3.  Combustion of ethene in air to form CO2 and H2O is given in the following equation

                C2H4(g)  +3O2(g)  → 2CO2(g) + 2H2O(l)

 If a mixture containing 2.8 g C2H4 and 6.4 g O2 is allowed to ignite, identify the limiting reactant and    determine the mass of CO2 gas will be formed.           

(Answer; 5.852 g)

 

Q4. Ammonia gas can be produced by heating together solid NH4Cl and Ca(OH)2

 2NH4Cl + Ca(OH)→ CaCl2 + 2NH3 + 2H2O

If a mixture containing 100 g of each these solids is heated, determine the limiting reactant and mass of NHgas produced

[Answer; Limiting reactant is NH4Cl, Mass of NH3 is 31.7 g]

 

Q5.  When aluminium is heated with nitrogen at 700oC, it gives aluminium nitride.

                2Al(s) + N2(g)   2AlN(s)

If 67.5 g of aluminium and 140 g of nitrogen gas are allowed to react, find out:

(a) Limiting reactant   (Answer; AlN)

(b)Mass of aluminum nitride produced? 

 (Answer; 102.5 g AlN

(c) Mass of excess reactant?  (Answer; 105 g N2)


 

 

 

Numericals on Stoichiometry (Mass-Mass, Mass-Volume, Vol-Vol relationships)

 

Q1. Calculate the mass of carbon dioxide (CO2) that can be obtained by complete thermal decomposition of 50 g of lime stone (CaCO3)

CaCO3(s) → CaO(s) + CO2(g)

Solution

Calculation of moles of CaCO3

Mass of CaCO3 = 50 g

Molar mass of CaCO3 = 40 + 12 + 3(16) = 100 gmol−1

Molar mass of CO2 = 12 + 2(16) = 44 gmol−1

Mass of CO2 = ?

 

No. of moles of CaCO3 = mass/molar mass = 50/100 = 0.5 mol

 

Mole Comparison of CaCO3 and CO2

CaCO3(s) → CaO(s) + CO2(g)

(Given)                      (Required)

 1 mol----------------> 1 mol

0.5 mol -------------> ?

According to unitary method

1 moles of CaCO3 produces 1 mole CO2

0.5 mole   of CaCOproduces 0.5 mole CO2

 

Calculation of moles of CO2

Mass of CO2 = n x M = 0.5 x 44 = 22 g

 

Q2. Mass of 49 g of solid potassium chlorate (KClO3) on heating decomposes completely to potassium chloride (KCl) with the liberation of oxygen gas(O2)

                   2KClO3     →   2KCl  +  3O2

 Determine volume of oxygen gas (O2) liberated at STP.

Solution

Calculation of moles of KClO3

Mass of KClO3 = 49 g

Molar mass of KClO3 = 39 + 35.5 + 3(16) = 122.5 gmol−1

Molar mass of O2 = 2(16) = 32 gmol−1

Volume of O2 at STP = ?

 

No. of moles of KClO3 = mass/molar mass = 49/122.5 = 0.4 mol

 

Mole Comparison of KClO3 and O2

2KClO3     →    2KCl  +  3O2

(Given)                            (Required)

             2 mol --------------------> 3mol

             0.4 mol ------------------> ?

According to unitary method

2 moles of KClO3 produces 3 mole O2

1 moles of KClO3 produces 3/2 mole O2

 0.4 mole of KClOproduces 3/2 x 0.4 mole O2 = 0.6 mol O2

 

Calculation of Volume O2 at STP

Volume of Oat STP = n x molar volume = 0.6 x 22.4 = 13.44 dm3

 

Q3.  On heating solid ammonium nitrate (NH4NO3), it decomposes to produced nitrous oxide (N2O)  and water.

NH4NO3(s) → N2O(g) + 2H2O(l)

 If 200 g of ammonium nitrate is completely consumed in the reaction, calculate the

(i)          Mass of water formed                               

(ii)         Volume of N2O gas liberated at STP

Solution

Calculation of moles of NH4NO3

Mass of NH4NO3 = 200 g

Molar mass of NH4NO3 = 14 + 4(1) + 14 + 3(16) = 80 gmol−1

Molar mass of H2O = 2(1) + 16 = 18 gmol−1

Molar volume at STP = 22.4 dm3

Mass of water formed = ?

Volume of N2O at STP = ?

 

No. of moles of NH4NO3 = mass/molar mass = 200/80 = 2.5 mol

 

Mole Comparison of NH4NO3 and N2O

 NH4NO3(s)      →    N2O(g) + 2H2O(l)

(Given)                                  (Required)

1 mol -----------------------> 2 mol

2.5 mol ---------------------> ?

According to unitary method

1 moles of NH4NOproduces 2 mole H2O

1 moles of NH4NOproduces 2/1mole H2O

2.5 mole of NH4NOproduces 2 x 2.5 mole H2O = 5 mol H2O

 

Calculation of Mass of H2O

Mass = n x molar mass = 5 x 18 = 90 g H2O

 

Calculation of Volume O2 at STP

Mole Comparison of NH4NO3 and N2O

NH4NO3(s)      →    N2O(g) + 2H2O(l)

(Given)                (Required)

1 mol -----------> 1mol

 2.5 mol ---------> ?

According to unitary method

1 moles of NH4NOproduces 1 mole N2O

2.5 mole of NH4NOproduces 1 x 2.5 mole N2O = 2.5 mol N2O

 

Volume of N2O at STP = n x molar volume = 2.5 x 22.4 = 56 dm3 N2O


Q4. Calculate the volume of carbon dioxide at STP that can be produced by the complete burning of 50 dm3 of butane gas (C4H10) in the excess supply of oxygen gas (O2).

2C4H10(g) + 13O2(g)  → 8CO2(g)  + 10H2O(g) 

Solution

Volume of butane at STP = 50 dm3

Volume of CO2 at STP = ?

 

2C4H10(g)   + 13O2(g)  →   8CO2(g)    +   10H2O(g) 

(Given)                                (Required)

2 mol                                      8 mol

2 Volume                              8 volume  (applying Gay-Lussac’s Law)

 2 dm3 --------------------> 8 dm3

50 dm3 ------------------> ?

 

According to unitary method from balanced chemical equation

2 dm3 of butane gives = 8 dm3 of carbon dioxide at STP

2 dm3 of butane gives = 8/2 dm3 of carbon dioxide at STP

50 dm3 of butane gives = 8/2 x 50 = 200 dm3 of carbon dioxide at STP

 

Q5. Silver sulphide (Ag2S) is an anti microbial agent. In an experiment, 24.8g Ag2S is reacted with the excess of hydrochloric acid as given in the following reaction: (Atomic mass; Ag =108 and S = 32)


Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

 

Calculate the


(i) Mass of AgCl formed                                                  

(ii)Volume of H2S produced at STP      

   

Solution

Calculation of moles of Ag2S

Mass of Ag2S = 24.8 g

Molar mass of Ag2S = 2(108) + 32 = 248 gmol−1

Molar mass of AgCl = 108 + 35.5   = 143.5 gmol−1

Molar volume at STP = 22.4 dm3

Mass of AgCl formed = ?

Volume of H2S at STP = ?

 

No. of moles of NH4NO3 = mass/molar mass = 24.8/248 0.1 mol

 

Mole Comparison of Ag2S and AgCl

Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

(Given)                         (Required)

1 mol -----------------> 2mol

0.1 mol ---------------> ?

According to unitary method

 1 moles of Ag2S produces 2 mole AgCl

0.1 mole of Ag2S produces 2 x 0.1 mole H2O = 0.2 mol AgCl

 

Calculation of Mass of AgCl

Mass = n x molar mass = 0.2 x 143.5  = 28.7 g AgCl

 

Calculation of Volume H2S at STP

Mole Comparison of Ag2S and H2S

 Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

(Given)                                       (Required)

1 mol --------------------------> 1 mol

0.1 mol ------------------------> ?

According to unitary method

1 moles of Ag2S produces 1 mole H2S

0.1 mole of Ag2S produces 1 x 0.1 mole H2O = 0.1 mol H2S

Volume of H2S at STP = n x molar volume = 0.1 x 22.4 = 2.24 dm3 H2S

 

 

 

 

Numericals on Limiting Reactant

 

Q1.Combustion of ethene in air to form CO2 and H2O is given in the following equation

C2H4(g) + 3O2(g) → 2CO2(g) + 2H2O(l)

If a mixture containing 2.8 g C2H4 and 6.4 g O2 is allowed to ignite, identify the limiting reactant and determine the mass of CO2 gas will be formed.          


Solution


(I) Conversion of Mass of Each Reactant into Moles

Mass of C2H(ethene)   = 2.8 g

Mass of O2                               = 6.4 g

Molar mass of C2H4        = 2(12) + 4(1) =   28 g/mol

Molar mass of O2                   = 2(16) =   32 g/mol

                       

No. of moles (n) of C2H4 = mass/molar mass = 2.8/28 = 0.1 mol

No. of moles (n) of O2         = mass/molar mass = 6.4/32 = 0.2 mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

C2H4(g)          +      3O2(g)     →       2CO2(g) + 2H2O(l)

(Given)                 (Given)                 (Required)

1 mole                  2 mole --------->    2 mole

0.1 mole              0.2 mole ------->    ?

 

Mole Comparison of C2H4 and CO2

 

1 moles of C2H4 produces 2 mole CO2

0.1 mole   of C2H4 produces 2 x 0.1 mole CO2 =   0.2 mole CO2

 

Mole Comparison of C2H4 and O2

 

3moles of O2 produces 2 mole CO2

1 mole   of NH4Cl produces 2/3 mole CO2

0.2 mole of NH4Cl produces 2/3 x 0.2 mole CO2 =   0.133 mole CO2

 

(IIIDetermination of Limiting Reactant

From above calculation, it is clear that least amount of product (CO2) is produced by O2 so O2 is a limiting reactant and amount of product is calculated from its amount.

 

(IV) Conversion of Molar Amount of Product into Gram

Molar amount of CO2 = 0.133 moles

Molar mass of CO2= 12 + 2(16) = 44 g/mol

 

Amount of CO2 in g = moles  x  molar mass = 0.133 x 44 = 5.852 g CO2


Q2.How many gram of NH3 are formed when 100 g of each of the following reagents are reacted together according to following equation:

2NH4Cl  +  Ca(OH)2  →  CaCl2  +  2NH3  +  2H2O

Solution


(I) Conversion of Mass of Each Reactant into Moles


Mass of NH4Cl                   = 100 g

Mass of Ca(OH)2                  = 100 g

Molar mass of NH4Cl     = 14  +  4  +  35.5 =   53.5 g/mol

Molar mass of Ca(OH)2= 40  + 32 +    2    =   74   g/mol

                       

No. of moles (n) of NH4Cl            = mass/molar mass = 100/53.5 = 1.869 mol

No. of moles (n) of Ca(OH)2           = mass/molar mass = 100/74   = 1.351mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

 2NH4Cl  + Ca(OH)2  → CaCl2    +  2NH3   +   2H2O

(Given)     (Given)                               (Required)

2 mole              1 mole        ----------->  2 mole

1.869 mole    1.315 mole ----------->  ?

 

Mole Comparison of NH4Cl and NH3

2 moles of NH4Cl produces 2 mole NH3

1 mole   of NH4Cl produces 2/2 mole NH3

1.869 mole of NH4Cl produces 2/2 x 1.869 mole NH=   1.869 mole NH3

 

Mole Comparison of Ca(OH)2 and NH3

1 mole   of Ca(OH)2 produces 2 mole NH3

1.351 mole of Ca(OH)2 produces 2/1 x 1.351 mole NH=   2.7 mole NH3

 

(III)       Determination of Limiting Reactant

From above calculation, it is clear that least amount of product (NH3) is produced by NH4Cl so NH4Cl is a limiting reactant and amount of product is calculated from its amount.

 

(IV) Conversion of Molar Amount of Product into Gram


Molar amount of NH3= 1.869 moles

Molar mass of NH= 14 + 3(1)  =  17 g/mol

 

Amount of NH3 in g = moles  x  molar mass =1.869    x    17 = 31.773 g NH3


Q3.When aluminium is heated with nitrogen at 700oC, it gives aluminium nitride.

                2Al(s) + N2(g)   2AlN(s)

If 67.5 g of aluminium and 140 g of nitrogen gas are allowed to react, find out:

(a)   Limiting reactant

(b)  Mass of aluminum nitride produced?

(c)  Mass of excess reactant?

Solution

(I) Conversion of Mass of Each Reactant into Moles

Mass of Al                = 67.5 g

Mass of N2                    = 140 g

Molar mass of Al  = 27 g/mol

Molar mass of N= 2(14) = 28 g/mol

                       

No. of moles (n) of NH4Cl     = mass/molar mass = 67.5/27 = 2.5 mol

No. of moles (n) of Ca(OH)= mass/molar mass = 140/28  = 5.0 mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

  2Al(s)         +         N2(g)                2AlN(s)

(Given)          (Given)           (Requreid)

2 mole                  1 mole  ---->    2 mole

2.5 mole              5.0 mole --->    ?

 

Mole Comparison of Al and AlN

2 moles of Al produces 2 mole AlN

1 mole   of Al produces 2/2 mole AlN

2.5 mole of Al produces 2/2 x 2.5 mole AlN =   2.5 mole AlN

 

Mole Comparison of N2 and AlN

1 moles of N2 produces 2 mole AlN

5.0 mole of N2 produces 2 x 5.0 mole AlN =   10 mole AlN

 

(III)       Determination of Limiting Reactant

From above calculation, it is clear that least amount of product (AlN) is produced by Al so Al is a limiting reactant and amount of product is calculated from its amount.

 

(IV) Conversion of Molar Amount of Product into Gram

Molar amount of AlN = 2.5 moles

Molar mass of AlN = 27 + 14  =  41 g/mol

Amount of AlN in g = moles x molar mass = 2.5  x 41 = 102.5 g AlN

 

(V) Calculation of Mass of Excess Reactant

2Al(s)         +         N2(g)                2AlN(s)

(Given)          (Requreid)

2 mole ------>    1 mole

2.5 mole ----->    ?

Mole Comparison of Al and N2

2 moles of Al reacts with 1 mole N2

1 mole   of Al produces ½ mole N2

2.5 mole of Al produces ½ x 2.5 mole N=   1.25 mole N2

 

Excess moles of N2 = Moles used – mole consumed = 5 – 1.25 = 3.75 moles N2 left behind

 

Conversion of excess mole into mass

 

Excess amount or mass of N2 = n x molar mass = 3.75 x 2(14) = 105 g N2 left behind


Q4.Hydrogen gas is commercially prepared by steam methane process

CH4 + H2O → CO + 3H2

If a mixture of 28.8 g methane and 14.4 g steam is heated in a furnace at elevated temperature to liberate carbon monoxide and hydrogen gas, determine the limiting reactant and the mass of hydrogen gas produced.

Solution


(I) Conversion of Mass of Each Reactant into Moles

Mass of CH4             = 28.8 g

Mass of H2O               = 14.4 g

Molar mass of CH4  = 12+4(1) =16 g/mol

Molar mass of H2O = 2(1)+16 = 18 g/mol

                       

No. of moles (n) of CH4 = mass/molar mass = 28.8/16  = 1.8 mol

No. of moles (n) of H2 = mass/molar mass = 14.4/18  = 0.8 mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

 CH4          +     H2O   →   CO  +   3H2

(Given)          (Given)                  (Required)

1 mole            1 mole  ------------>  3mole

1.8 mole         0.8 mole ---------->    ?

 

Mole Comparison of CH4 and H2

1 moles of CH4 produces 3 mole H2

1.8 mole of CH4 produces 3 x 1.8 mole H2 =   5.4 mole H2

 

Mole Comparison of H2O and H2

1 moles of H2O produces 3 mole H2

0.8 mole of H2O produces 3 x 0.8 mole H2 =   2.4 mole H2

 

(III)      Determination of Limiting Reactant

From above calculation, it is clear that least amount of product (H2) is produced by H2O so H2O is a limiting reactant and amount of product is calculated from its amount.

 

(IV)Conversion of Molar Amount of Product into Gram

Molar amount of H2=2.4 moles

Molar mass of H= 2(1)  =  2 g/mol

 

Amount of H2 in g = moles x molar mass = 2.4  x 2 = 4.8 g H2

 


Q5. How many grams of Na2S2O3 will be produced when 200 g each of the three reagents are reacted together according to following equation?

 2Na2S  +  Na2CO3  +  4SO2  →  3Na2S2O3  +  CO2

Solution

 

1. Determination of molar amounts of reactants

Mass of each reactant   = 200 g

Molar mass of Na2S        = 46 + 32             = 78 g/mol

Molar mass of Na2CO3    = 46 + 12 + 48  = 106 g/mol

Molar mass of SO2                = 32 + 32             = 64 g/mol

 

No. of moles of Na2S in 200 g     = mass/molar mass = 200/78    =  2.56 moles

No. of moles of Na2CO3 in 200 g = mass/molar mass = 200/106 =  1.88 moles              

No. of moles of SO2 in 200 g        = mass/molar mass = 200/64   =  3.12 moles

 

2. Calculation of molar amount of products from molar amount of each reactant

2Na2S        +  Na2CO3   +  4SO2       →        3Na2S2O3  +  CO2

 (Given)    (Given)       (Given)                 (Required)

2 mole           1 mole        4 mole ----------->  3 mole

2.56 mol        1.88 mol     3.12 mol -------->  ?

 

2 moles of Na2S produces 3 moles Na2S2O3

1 mole of Na2S produces 3/2 moles Na2S2O3

.56 moles of Na2S produces 3/2 x 2.56 moles Na2S2O= 3.84 moles Na2S2O3

 

1 mole of Na2CO3 produces 3 moles Na2S2O3

1.88 mole of Na2CO3 produces 3 x 1.88 moles Na2S2O= 5.64 moles Na2S2O3

 

4 moles of SO2 produces 3 moles Na2S2O3

1 mole of SO2 produces ¾ moles Na2S2O3

3.12 mole of SO2 produces ¾ x 3.12 moles Na2S2O= 2.34 moles Na2S2O3

 

3. Determination of L.R. and Mass of Product

From above calculation, it is clear that least amount of product (Na2S2O3) is produced by SO2, so SO2 is a limiting reactants.  So amount of SO2 is used to calculate amount of Na2S2O3.

 

Molar amount of Na2S2O= 2.34 moles

Molar Mass of  Na2S2O3  =  2(23) + 2(32) + 3(16) = 46 + 64 + 48 = 158 g/mole

 

Amount of Na2S2O3  in g = moles x molar mass = 2.34 x 158 = 369.72 g Na2S2O3  (Answer)

 

Q6. 5.6 g of NH3 are allowed to react with 4.5 g of Oaccording to following equation. Calculate number of moles, number of molecules, mass in gram and volume in cm3 of nitric oxide evolved at STP.

 4NH3    +5O2   → 4NO + 6H2O

Solution

 

(I) Conversion of mass of each reactant into moles

Mass of NH3                                   = 5.6 g

Mass of O2                                        = 4.5 g

Molar mass of NH3              = 14+ 3(1)  =  17 g/mole

Molar mass of O2                   = 16  +  16 =   32 g/mole

No. of moles of NH3        = mass/molar mass = 5.6/17 = 0.3294 mol

No. of moles of O2                 = mass/molar mass = 4.5/32 = 0.141 mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

4NH3    + 5O2       →     4NO     +    6H2O

(Given)        (Given)                        (Required)

4 mole           5 mole ------------> 4 mole

0.3294 mol   0.141 mol--------> ?

               

4 moles of NH3 produces 4 moles of NO

1 mole of NH3 produces 4/4 mole of NO

0.3294 mol of NH3 produces 4/4 x 0.3294 mole of NO = = 0.3294 mol NO

 

5 moles of O2  produces 4 moles of NO

1 mole of O2 produces 4/5 moles of NO

0.141 mol of O2 produces 4/5 x 0.141 moles of NO = = 0.1128 mol NO

 

(III)       Determination of Limiting Reactant and number of moles of NO

From above calculation, it is clear that least amount of product (NO) is produced by O2 so O2 is a limiting reactant and amount of product is calculated from its amount. Hence number of moles of NO formed will be 0.1128 mol

 

(IV)       Conversion of Molar Amount of Product into Number of molecules

Number of molecules = n x NA    0.1128  x 6.02 x 1023 6.79 x 1023 molecules of NO

 

(V)         Conversion of Molar Amount of Product into Gram

Molar amount of NO = 0.1128  moles

Molar mass of NO = 14 + 16  = 30 g/mole

Amount of NO in g = moles x molar mass  0.1128  x 30 3.384 g NO

 

(VI)       Conversion of Molar Amount of Product into Volume

Volume of gas in cm= n x molar volume   0.1128  x 22400 2526.72 cm3 NO

 


Q8.Calculate each of the following quantities          

(ii) Mass in gram of 5.6 dm3 of ethene (C2H4) at STP     

(ii) Number of molecules in 1 liter g of SO3

(iii) Volume in cm3 of 0.71 g Cl2 gas at STP       

(iv) Number of formula units in 585 g of NaCl 

Solution

Calculation of mass in gram of 5.6 dm3 of ethene (C2H4) at STP

Volume of ethene gas (C2H4) at STP 5.6 dm3

Molar volume at STP = 22.4 dm3

No. of moles of given volume of ethene = ?

No. of moles (n) = Volume of gas at STP/Molar volume = 5.6/22.4 = 0.25 mol

 

Calculation of Number of molecules in 1 liter g of SO3

Volume of SO3at STP 1 liter

Molar volume at STP = 22.4 liter

Avogadro’s number = 6.02 x 1023 molecules/mol

No. of molecules of given volume of SO3 = ?

No. of molecules = V at STP/molar volume x NA = 1/22.4 x 6.02 x 1023 = 2.69 x 1022 molecules

 

Calculation of Volume in cm3 of 0.71 g Cl2 gas at STP

Mass of Cl2 gas at STP = 0.71 g

Molar mass of Cl2 gas = 2(35.5) = 71 g mol−1

Molar volume at STP = 22.4 dm3

No. of molecules = mass/molar mass x molar volume = 0.71/71 x 22.4 = 0.224 dm3

 

Calculation of Number of formula units in 585 g of NaCl

Mass of NaCl = 585 g

Molar mass of NaCl = 23 + 35.5 = 58.5 g mol−1

Avogadro’s number = 6.02 x 1023 formula units/mol

No. of molecules = mass/molar mass x NA = 585/58.5 x 6.02 x 1023 = 6.02 x 1024 formula units 


Solution of Chemistry Paper-A for XI 


Q1.Calculate each of the following quantities      

(i) Mass in gram of 3.01 x 1023 molecules of ethyne (C2H2)                   

(ii) Number of molecules in 6.4 g of SO2

(iii) Volume in cm3 of 38.4 g O2 gas at STP      

(iv) Number of formula units in 333 g of CaCl2

  Solution

Mass in gram of 3.01 x 1023 molecules of ethyne (C2H2)                     

No. of molecules of ethyne (C2H2) = 3.01 x 1023 molecules

Avogadro’s number = 6.02 x 1023 formula units/mol

Molar mass of ethyne (C2H2) = 2(12) + 2(1) = 26 g mol−1

Mass of ethyne (C2H2) = ?

Mass from particles = (Np/NA) x M = (3.01 x 1023 /6.02 x 1023) x 26 = 13 g

 

Number of molecules in 6.4 g of SO2

Mass of SOat STP 6.4 g

Molar mass of SO2= 32 + 2(16) = 64 g mol−1

Avogadro’s number = 6.02 x 1023 molecules/mol

No. of molecules of given mass of SO= ?

No. of molecules = mass/molar mass x NA = 6.4/64 x 6.02 x 1023 = 6.02 x 1022 molecules

 

Volume in cm3 of 38.4 g O2 gas at STP

Mass of Ogas at STP = 38.4 g

Molar mass of O2 gas = 2(16) = 32 g mol−1

Molar volume at STP = 22400 cm3

No. of molecules = mass/molar mass x molar volume = 38.4 /32 x 22400 = 26880 m3

 

Number of formula units in 333 g of CaCl2              

Mass of CaCl2 = 333 g

Molar mass of CaCl2 = 40 + 2(35.5) = 111 g mol−1

Avogadro’s number = 6.02 x 1023 formula units/mol

No. of molecules = mass/molar mass x NA = 333/111 x 6.02 x 1023 = 1.806 x 1024 formula units

 

Q2. Mass of 49 g of solid potassium chlorate (KClO3) on heating decomposes completely to potassium chloride (KCl) with the liberation of oxygen gas (O2)                               (5)

    2KClO→ 2KCl + 3O2

Determine volume of oxygen gas (O2) liberated at STP.

 

Solution

Calculation of moles of KClO3

Mass of KClO3 = 49 g

Molar mass of KClO3 = 39 + 35.5 + 3(16) = 122.5 gmol−1

Molar mass of O2 = 2(16) = 32 gmol−1

Volume of O2 at STP = ?

 

No. of moles of KClO3 = mass/molar mass = 49/122.5 = 0.4 mol

 

Mole Comparison of KClO3 and O2

2KClO3     →    2KCl  +  3O2

(Given)                            (Required)

              2 mol --------------------> 3mol

              0.4 mol ------------------> ?

According to unitary method

2 moles of KClO3 produces 3 mole O2

1 moles of KClO3 produces 3/2 mole O2

0.4 mole of KClOproduces 3/2 x 0.4 mole O2 = 0.6 mol O2

 

Calculation of Volume O2 at STP

Volume of Oat STP = n x molar volume = 0.6 x 22.4 = 13.44 dm3

 

Q3. How many grams and volume in cm3 of NH3 at STP are formed when 100 g of each of the following reagents are reacted together according to following equation;        

2NH4Cl(s)+Ca(OH)2(s)CaCl2(s)+2NH3(g)+ 2H2O


Solution


(I) Conversion of Mass of Each Reactant into Moles


Mass of NH4Cl                   = 100 g

Mass of Ca(OH)2                = 100 g

Molar mass of NH4Cl     = 14  +  4  +  35.5 =   53.5 g/mol

Molar mass of Ca(OH)2= 40  + 32 +    2    =   74   g/mol

                       

No. of moles (n) of NH4Cl            = mass/molar mass = 100/53.5 = 1.869 mol

No. of moles (n) of Ca(OH)2           = mass/molar mass = 100/74   = 1.351mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

2NH4Cl+ Ca(OH)2     →CaCl2    +  2NH3   +   2H2O

(Given)      (Given)                            (Required)

2 mol            1 mol        ---------------->  2 mole

1.869mol   1.315 mol --------------->  ?

 

Mole Comparison of NH4Cl and NH3

 2 moles of NH4Cl produces 2 mole NH3

1 mole   of NH4Cl produces 2/2 mole NH3

1.869 mole of NH4Cl produces 2/2 x 1.869 mole NH=   1.869 mole NH3

 

Mole Comparison of Ca(OH)2 and NH3

1 mole   of Ca(OH)2 produces 2 mole NH3

1.351 mole of Ca(OH)2 produces 2/1 x 1.351 mole NH=   2.7 mole NH3

 

(IIIDetermination of Limiting Reactant

From above calculation, it is clear that least amount of product (NH3) is produced by NH4Cl so NH4Cl is a limiting reactant and amount of product is calculated from its amount.

 

(IV)Conversion of Molar Amount of Product into Gram


Molar amount of NH3= 1.869 moles

Molar mass of NH= 14 + 3(1)  =  17 g/mol

 

Amount of NH3 in g = moles  x  molar mass =1.869    x    17 = 31.773 g NH3

 


(V) Conversion of Molar Amount of Product into Volume


Molar amount of NH3= 1.869 moles

Molar volume at STP in cm3  = 22400 cm3/mol

 

Volume of NH3 at STP = moles  x  molar volume =1.869  x  22400 = 41865.6 cm3 NH3




Solution of Chemistry Paper-B for XI

Q1.  Calculate each of the following quantities 
      
(i) Mass in gram of 5.6 dm3 of ethene (C2H4)                 
(ii) Number of molecules in 1 liter g of SO3

(iii) Volume in cm3 of 0.71 g Cl2 gas at STP     

(iv) Number of formula units in 585 g of NaCl


Solution

Calculation of mass in gram of 5.6 dm3 of ethene (C2H4) at STP

Volume of ethene gas (C2H4) at STP 5.6 dm3

Molar volume at STP = 22.4 dm3

No. of moles of given volume of ethene = ?

No. of moles (n) = Volume of gas at STP/Molar volume = 5.6/22.4 = 0.25 mol

 

Calculation of Number of molecules in 1 liter g of SO3

Volume of SOat STP 1 liter

Molar volume at STP = 22.4 liter

Avogadro’s number = 6.02 x 1023 molecules/mol

No. of molecules of given volume of SO3 = ?

No. of molecules = V at STP/molar volume x NA = 1/22.4 x 6.02 x 1023 = 2.69 x 1022 molecules

 

Calculation of Volume in cm3 of 0.71 g Cl2 gas at STP

Mass of Cl2 gas at STP = 0.71 g

Molar mass of Cl2 gas = 2(35.5) = 71 g mol−1

Molar volume at STP = 22.4 dm3

No. of molecules = mass/molar mass x molar volume = 0.71/71 x 22.4 = 0.224 dm3

 

Calculation of Number of formula units in 585 g of NaCl

Mass of NaCl = 585 g

Molar mass of NaCl = 23 + 35.5 = 58.5 g mol−1

Avogadro’s number = 6.02 x 1023 formula units/mol

No. of molecules = mass/molar mass x NA = 585/58.5 x 6.02 x 1023 = 6.02 x 1024 formula units 


Q2.Silver sulphide (Ag2S) is an anti microbial agent. In an experiment, 24.8g Ag2S is reacted with the excess of hydrochloric acid as given in the following reaction: (Atomic mass of Ag is 108 and S is 32)

Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

Calculate the

(i)Mass of AgCl formed                              

(ii)Volume of H2S produced at STP           

Solution

Calculation of moles of Ag2S

Mass of Ag2S = 24.8 g

Molar mass of Ag2S = 2(108) + 32 = 248 gmol−1

Molar mass of AgCl = 108 + 35.5   = 143.5 gmol−1

Molar volume at STP = 22.4 dm3

Mass of AgCl formed = ?

Volume of H2S at STP = ?

 

No. of moles of NH4NO3 = mass/molar mass = 24.8/248 = 0.1 mol

 

Mole Comparison of Ag2S and AgCl

Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

(Given)                          (Required)

1 mol -----------------> 2mol

0.1 mol ---------------> ?

According to unitary method

1 moles of Ag2S produces 2 mole AgCl

0.1 mole of Ag2S produces 2 x 0.1 mole H2O = 0.2 mol AgCl

 

Calculation of Mass of AgCl

Mass = n x molar mass = 0.2 x 143.5  = 28.7 g AgCl

 

Calculation of Volume H2S at STP

Mole Comparison of Ag2S and H2S


 Ag2S(s)  +  2HCl(aq) → 2AgCl(s) + H2S(g)

(Given)                                          (Required)

  1 mol --------------------------> 1 mol

0.1 mol ------------------------> ?


According to unitary method


 1 moles of Ag2S produces 1 mole H2S

0.1 mole of Ag2S produces 1 x 0.1 mole H2O = 0.1 mol H2S


Volume of H2S at STP = n x molar volume = 0.1 x 22.4 = 2.24 dm3 H2S

 

Q3. When aluminium is heated with nitrogen at 700oC, it gives aluminium nitride.

                2Al(s) + N2(g)   2AlN(s)

If 67.5 g of aluminium and 140 g of nitrogen gas are allowed to react, find out:

(a)Limiting reactant     

(b) Mass of aluminum nitride produced?         

(c) Mass of excess reactant?


Solution


(I) Conversion of Mass of Each Reactant into Moles

Mass of Al                = 67.5 g

Mass of N2                    = 140 g

Molar mass of Al  = 27 g/mol

Molar mass of N= 2(14) = 28 g/mol

                       

No. of moles (n) of NH4Cl     = mass/molar mass = 67.5/27 = 2.5 mol

No. of moles (n) of Ca(OH)= mass/molar mass = 140/28  = 5.0 mol

 

(II) Calculation of molar amount of product from molar amount of each reactant

 

   2Al(s)         +         N2(g)                2AlN(s)

(Given)          (Given)           (Requreid)

2 mole                  1 mole  ---->    2 mole

2.5 mole              5.0 mole --->    ?

 

Mole Comparison of Al and AlN

2 moles of Al produces 2 mole AlN

 1 mole   of Al produces 2/2 mole AlN

2.5 mole of Al produces 2/2 x 2.5 mole AlN =   2.5 mole AlN

 

Mole Comparison of N2 and AlN

1 moles of N2 produces 2 mole AlN

5.0 mole of N2 produces 2 x 5.0 mole AlN =   10 mole AlN

 

(III)       Determination of Limiting Reactant

From above calculation, it is clear that least amount of product (AlN) is produced by Al so Al is a limiting reactant and amount of product is calculated from its amount.

 

(IV) Conversion of Molar Amount of Product into Gram

Molar amount of AlN = 2.5 moles

Molar mass of AlN = 27 + 14  =  41 g/mol

Amount of AlN in g = moles x molar mass = 2.5  x 41 = 102.5 g AlN

 

(V) Calculation of Mass of Excess Reactant

2Al(s)         +         N2(g)                2AlN(s)

(Given)          (Requreid)

 2 mole ------>    1 mole

2.5 mole ----->    ?

Mole Comparison of Al and N2

 2 moles of Al reacts with 1 mole N2

 1 mole   of Al produces ½ mole N2

 2.5 mole of Al produces ½ x 2.5 mole N=   1.25 mole N2

 

Excess moles of N2 = Moles used – mole consumed = 5 – 1.25 = 3.75 moles N2 left behind

 

Conversion of excess mole into mass

 

Excess amount or mass of N2 = n x molar mass = 3.75 x 2(14) = 105 g N2 left behind


 Q1.    CaCO3 is often used to generate CO2 gas in industry. If 200 g of CaCO3 is strongly heated, what volume of CO2 gas will be obtained at 30°C and 1200 torr pressure? (KB- 2017)

             CaCO3      →    CaO         +      CO2

Solution

Calculation of moles of CaCO3

Molar mass of CaCO3 = 40 + 12 + 48 = 100 gmol-1

Number of moles = mass/molar mass = 200/100 = 2 moles

 

Calculation of moles of CO2

CaCO3      →    CaO         +      CO2

(Given)                                    (Required)

1 mol ---------------------------> 1 mol

2 mol ----------------------------> ?


According to unitary method


1 mole of CaCO3 gives 1 mole of CO2

2 moles of CaCO3 gives = 1/1 x 2 = 2 moles of CO2

 

Calculation of Volume of CO2

n = 2 mole

T = 30°C ----> 30  +  273 = 303 K [ ∴K = °C + 273]

P = 1200 torr ----> 1200/760 = 1.58 atm [ 1 atm = 760 torr]

R = 0.0821 atm-dm3-mole–1-K–1

V = ?

 

PV = nRT

V= nRT/P 

= 2 (mole) x 0.0821 (atm-dm3-mol−1-K−1) x 303(K)/1.58 (atm)

 = 31.49 dm3


Q2. What volume of CO2 gas measured at 20°C and 720 torr pressure will be produced by the reaction between 200 g of Na2CO3 and HCl? (KB- 2016)

Na2CO3  +  2HCl     2NaCl    +   CO2  +  H2O


Solution


Calculation of moles of Na2CO3

Molar mass of Na2CO3 = 46 + 12 + 48 = 106 gmol−1

Number of moles = mass/molar mass = 200/106 = 1.886 moles

 

Calculation of moles of CO2

 

Na2CO3 +  2HCl   → 2NaCl CO2    + H2O                     

(Given)                                       (Required)

1 mol ------------------------------> 1 mol

1.886  mol ----------------------> ?

 

According to unitary method


1 mole of Na2CO3 gives 1 mole of CO2

1.886 mole of Na2CO3 gives 1/1 x 1.886 = 1.886 mole of CO2

 

Calculation of Volume of CO2

n = 1.886 mole

T = 20°C ----> 20  +  273 = 293 K [ ∴K = °C + 273]

P = 720 torr ----> 720/760 = 0.947 atm [ ∴ 1 atm = 760 torr]

R = 0.0821 atm-dm3-mole–1-K–1

V = ?

 

PV = nRT

V= nRT/P 

= 1.886 (mole) x 0.0821 (atm-dm3-mol−1-K−1) x 293 (K)/0.947 (atm) 


47.90 dm3


Q3. 100 grams of KNO3 are heated to redness. What volume of oxygen at 39°C and 765 mm pressure will evolve? 2KNO3 → 2KNO2 + O2


Solution


Calculation of moles of KNO3

Molar mass of KNO3 = 39 + 14 + 48 = 101 gmol−1

Number of moles = mass/molar mass = 100/101 = 0.99 moles

 

Calculation of moles of O2


2KNO3 → 2KNO2 + O2

              (Given)                   (Required)

              2 mol ----------------> 1 mo

             0.99  mol ------------> ?


According to unitary method


1 mole of KNO3 gives 1 mole of O2

0.99 mole of KNO3 gives ½  x 0.99 = 0.495 mole of O2

 

Calculation of Volume of O2

n = 0.495 mole

T = 39°C ----> 39  +  273 = 312 K [ ∴K = °C + 273]

P = 765 torr ----> 765/760 = 1.006 atm 

[ ∴ 1 atm = 760 torr]

R = 0.0821 atm-dm3-mole–1-K–1

V = ?

 

PV = nRT

V= nRT/P 

= 0.495 (mole) x 0.0821 (atm-dm3-mol−1-K−1)

 x 29303 (K)/1.006 (atm) 

12.06 dm3


Q4. If 53.5 g of NH4Cl is heated with Ca(OH)2, how many grams of NH3 is produced? Also find the volume of NH3 at STP according to the following equation (KB- 2021)           

2NH4Cl + Ca(OH)2  →2NH+ CaCl2 +  2H2O

Solution

Calculation of moles of NH4Cl

Molar mass of NH4Cl = 14 + (4x1) + 35.5 = 53.5 gmol−1

Number of moles = mass/molar mass = 53.5/53.5 = 1.00 moles

2NH4Cl + Ca(OH) →  2NH3  + CaCl2  +  2H2O

(Given)                        (Required)

2 mol -------------------> 2 mol

1 mol ------------------->  ?

According to unitary method

2 mol of NH4Cl gives 2 mol of NH3

1 mol of NH4Cl gives = 2/2 x 1 = 1 mol of NH3


Calculation of Mass of NH3

Mass of NH3 = n x molar mass = 1 x 14+3 = 1 x 17 = 17 g


Calculation of Volume of NH3 at STP

Volume of NH3 at STP = n x molar volume = 1 x 22.4 dm3 = 22.4 dm3


Q5. Zinc reacts with H2SO4 (dil) as given below (KB- 2019, 2008)

Zn        +  H2SO4     →    ZnSO4     +  H2

Calculate the mass of ZnSO4, the volume of H2 gas at STP and the number of molecules of H2 gas which will be produced by reacting 163.5 g of Zn with H2SO4.

Solution

Calculation of moles of Zn

Molar mass of Zn = 65.4 gmol−1

Number of moles = mass/molar mass = 163.5/65.5 = 2.500 moles

Zn        +  H2SO4     →    ZnSO4     +  H2

Given                           Required

1 mole  --------------->  1 mole

2.5 mole -------------> ?


Calculation of moles of ZnSO4

According to unitary method

1 mol of Zn gives 1 mole of ZnSO4

2.5 mol of Zn gives = 2.5 x 1 mol of ZnSO4 = 2.5 mol of ZnSO4


Calculation of Mass of ZnSO4

Mass of ZnSO4 = n x molar mass = 2.5 x (65.4 + 32 + 16 x 4) = 1 x 17 = 161.4 g


Calculation of moles of H2

According to unitary method

1 mol of Zn gives 1 mole of H2

2.5 mol of Zn gives = 2.5 x 1 mol of H2 = 2.5 mol of H2


Calculation of Volume of H2 at STP

Volume of H2 at STP = n x molar volume = 2.5 x 22.4 = 56 dm3


Calculation of Number of molecules of H2


No. of molecules = n x Avogadro’s no. = 2.5 x 6.02 x 1023 = 1.505 x 1024 molecules

 


 

No comments:

Post a Comment

Search This Blog

Search This Blog